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1 Introduction

The rapid deelopment of multimedia information technologies has mdisk fostered research

on Content-Based Image Retrieval Systems (CBIRS). In what follows, “Content” refers to picto-
rial attributes that can bexeacted by image analysis methods. CBIRSvaksploratory “data
mining” in large pictorial databases: search and nedtief images whose attribes satisfy spe-

cific criteria (e.g. Gudivada and Raghavan, 1995). Typical image attributes are the dominant col-
ors of the images (e.g. Gong and Sakauchi, 1995), tlxéirré& components (e.g. Pentlaedal,

1994), or the shape of the objects contained in the pictures (e.g. Kato, 1992, Elicnt995).

CBIRS should d&r tools for the construction and precompilation ofirzatex to the pictorial
database, for thandexing(search) andetrieval operations to answer specific queries, for the
browsingand selection amongst answers, and forafisemenbf the search. Human interaction

in such operations is fundamental: for classifying the images in order to structure the database,
for selecting the most descriiimage attribtes, for formulating and refining queries, and for
browsing amongst responses to these queries. Simple approaches tovingralxbems are
reaching their limits in terms of descrigi paver, retrieval accurag, and ability to cope with

large datasets. There is need for more sophisticated methods basediptee on computer

vision techniques (e.g. Gudivada and Ragina1995; Pun and Milanese, 1995). In this cdnte
exploratory statistics offer alternatiapproaches, well suited to the handling gjdatatasets as

well as to human interaction.

We concentrate here on the ird&eation phase. @&n a training set composed of erylarge
number of images, the problem is to obtain a hierarchicak imd®se nodes pointuwards the
various image classes, whose linkpress inclusion relationships, and whosedsaare the indi-
vidual images. This incewill also be used as a decision tree for retnig images from the data-
base. This is basically a learning problem for wharhifies of solutions»dst in computer vision
and other domains (e.g. Diday and Lediker, 1991; Cheret al, 1993; Bhanu and Poggio,
1994). In the present case, the training set will be composed afeacialtection of images, of
various types. It seems therefore unrealistic to base the éneation on any sophisticated struc-
tural object recognition procedure, dilg to fail in the absence of more precise assumptions.
Also, it is knavn to be dificult to extract hierarchically-structured classes using connectionist
methods, and thakplanations for classifications in terms of the original feature set are similarly

difficult to obtain.
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We ague here thatxploratory statistics (e.g. Jami991) proide paradigms and methods that

can greatly ease the major operationmlved in CBIRS. Methods fromxploratory statistics

allow the dimensionality of the classification problem to be reduced, permitting hierarchical
structuring of large datasets. In addition, these methods provide a list of pertinent image features
and attrilutes that led to the classification obtained. Due to the nature of the data (images of
unconstrained content) and to the constraint of designing CBIRS with acceptable response times,
features and attributes used here are global (e.g. luminance and chrominance, edge statistics, sta-

tistics on regions, etc.) rather than local or structural.

2 Exploratory statistics

21 Overview

Exploratory statistics (e.g. Jami991) ofers a collection of methods aimed at better under-
standing of lage datasets, i.e. ax@aining the underlying structure of the dataset. d¥scribe
below correspondence analys{Benzécri 1973) for helping %plore and gplain” the database,

andascendant hierarchical classificati¢gae.g. Lebaret al, 1979) for providing a classification.

Correspondence analysis (CA) belongs to #milfy of factor analysis methods; as such, it pro-
vides a synthetic representation in & imensionfactor spaceof lamge sets of numerical data.
These data constitute a cloud of points in a feature spactrknalysis methods rely on finding
a new ordered, orthogonal set ofes thefactor axesso that the sum of the norms of the projec-

tions of the data onto the axes are maximized, for each axis in turn.

Perhaps the best-kwa factor analysis method is Principal Component Analysis (PCA). The
term PCA is frequently used without fully-defining the method by which the coordinates of the
points in the original cloud were determined. datf the specification of these coordinates, and
thus the metric used for calculating the distance between data points, is crucial in determining
just what sort ofdctor analysis is performed. PCA is often performed using tregieace of the
mean-centered data as the metric. The analysis thusdg@sofictors that characterize the
varianceof the original data. If the vadata for each feature is also normalized by its empirical
standard daation as well as being mean-centered, thencthreelation between data points

becomes the metric for the factor analysis.

In CA, the coordinates of the data points are defined so that the usual Euclidean metric in the
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original feature space corresponds tojthalistance between the points, and thus the analysis is

in terms of thandependencef the data. It will be seen b&lahat CA ofers other adantages

also. It is often useful to adopt the terminology of PCA, and to describe factor axes as explaining
a certain percentage of thariance of the original cloud of points. Here this should be under-
stood to refer to the distuion of the points according to th@ metric, rather than the ca-

riance of the raw data as used by PCA.

CA has as starting point a numerical data ta{kgff] ; in our case, n@s correspond to images

i O[1...N], columns to attribtes j O [1...M] with usuallyM « N, and cells to the measure
9; of a given attrilute for a particular image. A specificity of CA with respect to othetof
analysis methods is thatwe and columns play a similar role. An “object” can be either one of
the N images (ravs) described each b values, or one of thév attributes (columns)
described each b  values. As with any factor analysis method, CA allows one to project in the
factor space of dimension< min{ M, N} the N image “objects”; in addition, CA permits the
simultaneous representation in the saawdr space of th# attribute “objects”. This projec-
tion into a common space alle one to determine which particular atiitd is near a cluster of
images, and thus to kwowhich are the important parameters for 2egiclass of images. In
other words, this method not only pridles classes,ub also &plains wly these classes are
obtained. CA is commonly used in data analysis,not as frequently in image analysis (for an
example of application of CA to biomedical image analysis, seeePan1988). CA can be per-
formed on a representadi subset of the image dataset, which plays the roletrairdng set
Other images in the dataset, omninages, can then be classified on the basis ofaitters
derived from the training set. As with yassuch technique, there is a tradétdtween the com-
putational cost of analyzing a ¢gr training set, and the reliability of the subsequent classifica-

tion of new data.

Ascendant hierarchical classification (AHC) is a computationally simple method amongst the
large family of clustering algorithms (e.g. Diday al, 1981). After projecting the images into
factor space, AHC alles iterative clustering of images that are the closest in this space. This
process yields a binary decision tree reflecting the hierarchy of similarities between images from
the training set. It is presented here because of its hierarchical nature, and its simpljcity

other unsupervised clustering technique could be applied to the data in factor space.
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2.2 Correspondence analysis

Correspondence analysis involves the felltg sequence of steps: (1) computation of a normal-

ized observation tabl¢p] from the original data tablgg] ; (2) determination of itg2 matrix

[c] ; () computation of eigemlues and eigeectors of [c] , the latter defining theattor

space; (4) representation of images and attributes in this space. The corresponding equations fol-
low (e.g. Lebartt al, 1979).

The sumG of all elements in[gij] is denoteds = ZN: lz;v'z 19 . The marginal sums (vec-
tors) are obtained by j = ZN: 19ij andg, = z:v': 19ij - Each elemenf pij] of the nor-

malized table is determined by:

Py = gij/ 99;- (1)

The factor space in which images and atttés are projected is spaed by the eigesectors of
the x2 matrix [c] = [c] = [p]T[p] , of rank min{ M, N} . Each element ofc] is gien
by:!

N
Gy = 1 0 ik il

V99 i 9

The number of eigealues and eigerectors of [c] is min(M, N), i.e. M in what follovs

2

since we assumbl « N. Eigervalues are denotedl,, with aJ[1...M] ; the corresponding
eigenvectors of dimensiav &g | j denoting the coordinates. Thegast eigenvalue is triv-
ial (A, =1.0). The follaving ratio indicates the percentage of the totiance of the system

that is explained by each factar(] [2...M]
A/ z Ay (3)

In the factor space, the scalar coordinate of imiagd 1...N] along factaa axis is:

veioy [P, @

1. This is actually a simplified form, rather than the {fllmatrix. This form is less computationally costly, and
takes advantage of the fact that its eigenvalues and eigers are identical to those of the original matrkeept that
the first becomes trivial. See Lebart et al, 1979, for a derivation.
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Similarly, the scalar coordinate of attribugel [1...M] along factor axis is:

A DZ [g: O (5)
aj J
g_]«/_a i=1
Equation (5) indicates that each atitd can be interpreted as the center of mass of all images,
with proper weighting of their coordinates. @ersely each image can be interpreted as the cen-

ter of mass of the properly weighted attributes:

lai = 0 Z [gi; OA (6)
9 _JAa =1

Equations (5) and (6) establish the correspondence between the projections in factor space of the
images and their attribes. The respee position of images and attites indicates which
attributes characterize the best agyi group of images pconverselywhich images are the most
typical of gven attritutes. Another useful element of information isyided by the absolute
contribution of image to one given factor agis (scalar):
. 2 .
Aly ;= —==2- 7

©o
O

®
5

This wvalue specifies the amount by which each imagentributes to axis . Images with the
highestAl , ,

absolute contribution of an attribute to one given factor axis is:

are the most significant ones to beetalnto account for axia. Similarly, the

AA, | = L ®)

2.3 Ascendant hieracchical classification

The purpose of the ascendant hierarchical classification is to cluster the objects (aeterin f
space) into meaningful groups. If the objects are the images, thislggaclasses of similar
images. In the factor space spawned bylthe  most significant factors (typically...4 ), the

Euclidean distance between two images is defined by:
) L
d=(i,i') = z [Ia,i—layi.]Z. 9
a=1

When using the distance defined by Equation (9), and due to Equation (1), each itaadgee

implicitly given a “mass’g; /G. This ability to define such a simple metric in the parameter
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space allws the clustering to be based on the geometrical proximity of elements in this space.
Ideally, the aggregation criterion shoulddild a binary tree by minimizing the within-class cen-
tered second moment while maximizing the between class moment. After the groupimg of tw
imagesi andi' or more generallyof two groups of images andy, the added within-class
moment is:

PPy . 2
v(n) = FX_'_FyDZl[Ia,X—Ia, 12, (10)
a=

with

I:x ory = é E[ z gi_} ! (11)

i Ocluster x ory

and where the cluster index([1...2N —1] numbers the nodes of the binarwipee.= 0
for nO[1...N], since the legs of the tree are the inttlual images; otherwis®(n) >0 for
NO[N+1,...,2N-1].

A suboptimal algorithm for wilding the classification tree, which guarantees minimum within-

class moments, consists of: (1) initializing the symmetric afray,| of sizeN x N with the

]
%
intra-class @riances of all possible pairs of images$ i,y = i'} (Equation (9)); (2) finding

the entries{ x, y} for which [v is minimum, and agggating the corresponding bagels

]
X, Y
or group of gels; (3) computing(n) ; (4) recomputing the arra)['vxl y] , whose rank has
diminished by 1; (5) going to (2). The resulting binary tree indicates which images are to be clus-

tered in order to obtain a meaningful hierarchy.

3 Results and discussion

3.1 Images, featues and attributes

Our image database currently containgesa thousand B/W and color picturesvsephoto-

graphs, objects, textures, biological specimen, etc.). Color is obviously a fundamental cue in dis-
criminating images. However, for brevity, we concentratevbelp the analysis of 54 grescale

images from our database. The images are unconstrained as to their content (see Figure 5). The
choice of representag features and attuiles is conditioned byavious fctors, including their

ease of computation as well as their statistical independence. The most basic feature used here is

theimage intensity We have also retained simple geometric features, nafireysgmentsand
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circular arcs approximating the image contours, as welteggonsobtained through a classical
region graving process. Details garding the algorithms we used for featuregaztion can be
found in e.g. Milaneset al, 1994; these details do not matter much in thevatlg analysis.

The above features lead to the followikig= 12 attributes:

averagels (attributé) and standard deviatiom;  (attribieof the intensity;

+ averagelg, (attribut8) and standard deviatiamg, 4)(of the segment lengths;

+ averagelgy (attributé) and standard deviatiomg 5 6)(of the segment orientations;
+ averaggl,, (attributé) and standard deviatiom,, 8)(of the circular arc lengths;

+ averaggl,i (attribute) and standard deviatiam, 5 10) of the circular arc radii;

* averagelpeg (attribut&l) of the standard deviation of the region intensities (global mea-

sure of the homogeneity of the regions);

- standard daation OReg (attribute 12) of the aerages of the ggon intensities (global

measure of the image homogeneity).

This choice of attributes provide translational, rotational and scale invariance in terms of the fac-
tor coordinates. Note that for color images, we replace @l and 2 by six attdkes, namely

the mean and standardvibgions of the R, G, B channels. It isfiifilt to a-priori select good
representative features for a large image database. Our selection of attributes certainly involves a
degree of arbitrariness, and could be straightforwardly modified. In fact, attribute 5 was found to
be unsuitable, andag excluded from the follwing analysis. The purpose herewever is not

to propose the best possible choice. Our goal is rather wo &t stress the role of@oratory
methods to assess the pertinence and role of each feature andeaftain a gien image set,

and therefore to ease their selection.
3.2 Correspondence analysis

The first step when applying CA to a dataset is to determine the numlaet@mEfto be tadn

into account. Eigeralues are used to thisett: each of them quantifies the amount of the total
variance of the systenxjglained by each correspondingcfor (Equation (3)). In our case, the
percentage explained by the 10 non-trivial eigenvalues isfor  :423%, :2X,7%, :14.7%,
Ag:8.9%,Ag 1 6.4%), 1 1.4%)\g ta,; :1.5%. The first four factors therefore explain 90.6%

of the total variance, and should be sufficient to analyze the influence of the various factors.
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The data (images, atttites) can be projected into ttaefor space spawned by any pair of eigen-
vectors. The most significant are eigectorse, and e;, respectiely called first and second
factor axis. The result is\gin in Figure 1. A first inspection readily st®the &istence of dis-
tinct image clusters (e.g. cluster of imageslB; 23, 35, 38), of isolated elements (e.g. image 5),
and of lage clouds. Similarlysome attribtes appear significant (e.g. attiibs 1, 2, 4) while
others seem correlated (e.g. atités 6, 7, 8, 10). The correlation of these features is unsurpris-
ing, asOgq, Hp » 05 @Nd0O, are are related to the disuition of cuned features (arcs) in

the images. The gment orientation will hae a lager variance in the presence of cedvfea-

tures, and it is not surprising that the variances in arc length and arc radius are correlated.
INSERT Figure 1.

Equation (7) alles one to rank images according to their contrdn to eachdctor axis. For the

first factor axise, X, = 42.3%), the most important images by decreasing order of influence are
nr. 32(absolute contriliion 9.39%), 47 (8.22%), 46 (7.60%), 45 (7.12%), 12 (4.64%), 42
(4.32%). These images are shmoin Figure 2. Br the secondaictor axise; Q5 = 24.7%), the

most important images are. 5 (11.35%), 13 (6.88%), 23 (6.38%), 48 (6.18%), 10 (5.86%), 32
(4.29%) (Figure 3).

INSERT Figure 2.
INSERT Figure 3.

In order to better understand the causes behind this diginibof images indctor space, it is
necessary to kwe which are the attrites that contriste the most to eachdtor axis. Similarly

to the case of images, Equation (8)wabBaattributes to be raek according to their absolute con-
tribution to each axis.d¥ the first &ctor axis, the most important attrtbs by decreasing order

of influence are nrl =y (absolute contribtion 56.24%), 12 TReg (12.19%), 4 =og

(8.21%) and 2 =u (7.33%); these four attuibes e&plain 83.97% of the axis. The dominant
attribute in explaining the first factor axis is the average grey value of the image. This is apparent
when looking at the images shio in Figure 2: of the images with thedast contributions, those

with neyative factor coordinates areery dark, while those with posig coordinates are light.

The second and third most important atttd&,oReg andog, , both characterize image homo-

geneity. This is again verified byxamining the images: e.g. images 12 and 42vgreater vari-
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ation in rg@ion intensities and geent lengths compared to 32, 47, 46 or 45. Finlbking at
the factor plane shen in Figure 1, one obsess that images 45, 46, 47 and 32 are clustered
together on one side of thector plane, while images 12 and 42 are on the.ofherdistances in

factor space between these images correspond well to the subjective differences between them.

Regarding the secondattor axis, the most important attitbs are nr2 = o5 (41.21%), 9 =

Har (19.57%), 10 =01 (12.02%) and 3 §g, (8.03%); these four attriibes explain 80.84%

of the axis. The dominant attute is the standard-diation of the image intensitylhis is con-

firmed by looking at Figure 3: images 10 and 48, with pasitictor coordinates, are highly con-
trasted, with a clearly bimodal intensity histogram. Their variances are much larger than those of
images 5, 13, 23 and 32, whose contrasts are low. The second and third most important attributes
are the gerage and standardwdation of the radii of the circular arcs approximating the image
contours. In addition to this d#rence in terms ofariance, images 10 and 48 shan &ident
difference in structural compligy compared to 5, 13, 23 and 32. Theséedifig characteristics

account for the clearly separated positions of these images in the factor plane.

Examination of Figure 1 pwides additional insights garding the choice of primites and
attributes. For example, attutes 6, 7, 8 and 10 (respeely 054, Hp| , O @NdO AR ) are very

close in the space spawned by the first two factors. If one decides to use only these factors for all
subsequent analysis,vegal of these attriltes could be dropped. In thisawit is possible to

select the features that really needlestion, hence diminishing computational cost. As an addi-
tional xample, it is interesting to obserthat attribtes 2 and 12d( andoReg), that one could

have expected to yield very similar results, are actually quite separated in factor space.

An adwantage of correspondence analysis with respect to @btar fanalysis methods, is that
the geometrical proximity of both images and atiiéls in thesamefactor plane can be exploited

to aid in the interpretation (Equations (5) and (6)). Thixésglified by looking in Figure 1 at

the proximity of attrilnte 2, and images 10 and 48 (top of figure). Correspondence analysis
allows one to infer from this obsetion that images 10 and 48 arery representaté of
attribute 2, or, conversely, that attrib 2 is a ky factor in positioning images 10 and 48actbr
plane. Wth other fictor methods, the analysis must be accomplished separately fowtherro

columns of[gij]

10
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3.3 Ascendant hierarchical classification

AHC, as defined in 8§83, is a sub-optimal algorithm for aggeging images indctor space.
Therefore, the hierarghof classes obtained solely depends on the choice of peidnd
attributes. Despite hwewer the simplicity of the attriies used here, the foling experiment

shows that meaningful classes can be obtained. Prior to applying the AHC algorithm, it is neces-
sary to select the numbkrof factors that will be used in Equations (9), (10) and (11). rtlik

factor space analysis where at most theegofs can bgraphically depicted, no such limit
applies here. It auld therefore be interesting to compare results obtained wighateralues of

L . For the sake of brevityve concentrate here on results obtained with the four most important
factors L = 4), explaining 90.6% of the totalariance. The binary tree obtained by AHC is
shavn in Figure 4. A brief analysis of the results obtained for oth&res ofL will also be

given.
INSERT Figure 4.

The results of the clustering are presented in Figure 5, where the 8 classes (32, 74, 5, 97, 99, 96,
54, and 103) corresponding to thede3 (where the root node isvld 0) of the tree are shvo.

These classes are ordereditically by their coordinate on the firgictor axis. Since these classes

hawe widely \arying intra-class ariance, thg contain difering numbers of imagesoFthe tvwo

large classes, the imagesshaeen grouped to indicatevinthese classes are split furthemo

the tree. Class 99 is split into classes 81 and 9Veitde and class 103 is split into classes 93,

95, 80 and 89 at level 5.

INSERT Figure 5.

The analysis of the contrdktions presented abe indicated thatverage grey lexl and variance

were the most significant attutes for the first and secoractor respectivelyThis is confirmed

by Figure 5, were the influence of theygseale distribtion plays a role. As one mes across

the tree (down Figure 5) from class 32 to class 103, it is apparent that the images become lighter.
The classes in the “middle” (99, 96, 54 and 93) contain images with high contrast, suggesting
that the secondattor axis was significant in determining these classes. The classes at the
extremes of the firstafctor axis (32, 74, 80 and 89) are composed of pictures withararimten-

sity distritution. Geometrical features also play an important role in the classificatiorr&ee@.

11
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Og.» Hag @ndo ). Classes 32, 74, 5, and 97 contain simple objects wgk kuale features,
whereas classes 80 and 89 contain objects with fine detail and small featuaesthere is a

trend from large scale to small scale features as one moves across the tree.

Some classes contain a mixture of objects without a sldgectiverelationship (e.g. classes 93,

95); this is to be>gected, not only since the atuiles used are globalubalso due to theatt

that only the first fourdctors are used. Other classesyéwer do establish subjegtily mean-

ingful relationships between pictures: class 74 contains only paperclips; class 99 interior scenes;
class 91 contains all the stamps in the dataset; class 96 contains all the playing cards; classes 80

and 89 (children of class 98) contain mainly biological images.

3.3.1 Stability

The analysis described abovaswepeated using only the firsotfactor axesl{ = 2 ), and also
considering all thedctors L = 10). There is insdicient space in this letter to present a detailed
analysis. When twaatCtors were used classes atlghree identical to classes 32, 74, 5 and 97 in
Figure 5 were obtained. Images 49 and 50 were classified with those in class 96, and there were
minor differences in the splitting of class 103. When all t#drs were considered, the results

were almost identical to those in Figure 5: class 74 remained unchanged, as did classes 99 and
103. Image 52 as meed to class 96, and image 5 to class 97. there waia agnor difer-

ences in the splitting of class 103. These results indicate that @&gsdactors that are robust

to the clustering system. Computationalisgs can thus be made by using a reduced number of

factors, with confidence that the classes obtained will not be radically altered.

The analysis &s also carried out with features 6, 7 and 8 suppressed, as suggested by their prox-
imity in factor space, discussed aboln this case, the classes obtained were identical to those in
Figure 5, &cept that images 27, 28 and 41 werevetbfrom class 96 to class 91. This is a con-
vincing demonstration of the usefulness of the joint representation of images and features in the
same graphicalactor space representation yided by CA: these features were selected for
exclusion after a quick perusal of Figure 1, rather than analysisgeftables of numbers. It also
indicates the stability of the technigue when number of features is reduced on the basis of depen-

dence.

12
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3.3.2 Subjectivity

It is important to note that gnudgement on the “goodness” of this clustering is inherently sub-
jective. Whether or not images are considered to be similar depends on the perceptions of the
user of the system, and also on the task for which the system is to be usesh Asgir may be
disappointed with a classification, such as the one presented here, in which intensity plays an
important role, since tlyemay be more interested in morphological features. Another peser

haps choosing images for an adising campaign, might be more interested in the colors, or

“mood”, of an image than in the objects it contains.

Correspondence analysis can not edhis problem. It can, mever indicate to the user clearly
which features are most responsible for the factor axes, allowing the user to exclude them if they
are not desired. Moreer, the fcility to project both images and features into the same plane
allows the user to obseryin a simple, graphical mannpevhich images are correlated with
which features. This might indicate that some images shoulcadbeded from the correspon-
dence analysis stage of the procedure, so thatdbe@ot unduly influence thadtors, and then

included only at the classification stage.

The subjectie nature of the image clustering problem can not beeddhdependently of the

tastes and needs of the usdris suggests that a fruitful area for future reseamhidvbe a sys-

tem that interacts with the usallowing the user to réew automatically-obtained classes, and

to mowe images between classes. Such a system could implement an on-line learning scheme, so
that it adapted to the preferences of its .ushrs could tak the form of adapting the features

used and the number addtors considered,ubit could also imolve a further transformation,

from the fictor space obtained from CA to a “uspace”, in which the metric reflects the past

preferences of the specific user.

4 Conclusion

The purpose of this note is to suggest the use of well-establigpletdatory statistical methods

for “exploring and gplaining” a pictorial database, in the franwek of content-based image
retrieval systems. Correspondence analysiviges a drastic data reduction, which permits bet-

ter understanding and explanation of the underlying relationships between the elements compos-
ing a gven dataset, and thus an intelligent structuring of the database. In partieailale of

the diverse image features and attitdss can be analyzed; this permits the insignificant ones to be

13
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eliminated. Bgether with an appropriate clustering method, such as ascendent hierarchical clas-
sification, we show how a method for building hierarchical classifications of large pictorial data-
bases. These techniques have been shown to produce subjectively good clusters, and to be robust
under changes in the number attors considered. These statistical methodsvahe structur-

ing of such databases in a manner more appropriate foiimgdend retrieval. Finally, the nature

of exploratory statistics lends them well to an interactisage; our we is that such methods

should be utilized as tools forgamizing image databases as a complement to other more classi-

cal pattern recognition approaches.
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Figure 1: Factor plane spawned by the first and second factor axes. Images are indicated by a dot
(.) and numbered from 1 to 58; circles correspond to images which coatifle most to thet-
tor axes. Attrilnites are indicated by a cross (+) surrounded byyasgreare; thg are numbered

from 1 to 12 (with 5 %cluded), corresponding respeetlly to L , 0 , Hg| :Og| s0g0 'Hal »
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Figure 2: The 6 images that contrib the most to the firsa¢tor axis, rangéd left to right by
decreasing order of their absolute conttibn. The plus (+) or minus (-) signs indicate whether

the images had posigé or ngative coordinates on this axis. Image 32: absolute contrition

9.39%:; 47: 8.22%:; 46: 7.60%; 45: 7.12%; 12: 4.64%; 42: 4.32%. Image numbers refer to Figure
1.
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Figure 3: The 6 images that contrib the most to the secoratfor axis, rankd left to right by
decreasing order of their absolute conttibn. The plus (+) or minus (-) signs indicate whether

the images had posi@ or ngative coordinates on this axis. Image Bir absolute contriltion
11.35%; 13: 6.88%; 23: 6.38%:; 48: 6.18%; 10: 5.87%; 32: 4.29%. Image numbers refer to Figure
1.

5(@) 13 (-) 23 (-) 48 (+) 10 (+) 32 (-)
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Figure 4: The binary classification tree obtained by ascendant hierarchical classification. The
horizontal coordinate corresponds to the image coordinate on thedist &xis (Equation (4)

with a = 4); the \ertical coordinate is the lagithm of the added intra-clasanance obtained

when creating a new class (Equation (10)).
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Figure 5: Classes atvel 3. The class numbering refers to Figure 4, the image numbering (in
parenthesis) refers to Figure 1. Thegtical ordering of the classes corresponds to their coordina-

tes on the first factor axis.
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