
E�cient access methods for content-based image retrieval with

inverted �les

Henning M�uller, David McG. Squire, Wolfgang M�uller and Thierry Pun

Computer Vision Group, University of Geneva

24 Rue du G�en�eral Dufour, CH-1211 Gen�eve 4, Switzerland

ABSTRACT

As human factor studies over the last thirty years have shown, response time is a very important factor for the
usability of an interactive system, especially on the world wide web. In particular, response times of under one
second are often speci�ed as a usability requirement.1 This paper compares several methods for improving the
evaluation time in a content-based image retrieval system (CBIRS) which uses inverted �le technology. The use
of the inverted �le technology facilitates search pruning in a variety of ways, as is shown in this paper. For large
databases (> 2000 images) and a high number of possible features (> 80000), e�cient and fast access is necessary
to allow interactive querying and browsing. Parallel access to the inverted �le can reduce the response time. This
parallel access is very easy to implement with little communication overhead, and thus scales well. Other search
pruning methods, similar to methods used in information retrieval, can also reduce the response time signi�cantly
without reducing the performance of the system. The performance of the system is evaluated using precision vs.
recall graphs, which are an established evaluation method in information retrieval. A user survey was carried out in
order to obtain relevance judgments for the queries reported in this work.

Keywords: inverted �le, content-based image retrieval, e�cient access, search pruning, speed evaluation

1. INTRODUCTION

The response time of an interactive computer system is great importance to user satisfaction. Despite this, the issue
is not frequently explicitly addressed in CBIR: many authors mention its importance, but only a few quote actual
times.2 The classic advice on response times states that 0.1 second is about the limit for the user to feel that the
system is reacting instantaneously, 1.0 second is about the limit for the user's ow of thought to stay uninterrupted,
and 10 seconds is about the limit for keeping the user's attention focused on the dialogue.3 A CBIRS should attempt
to stay below the 1 second limit for any query, although in a distributed system, such as a web-based CBIRS, network
bandwidth can be the limiting factor.

The goal should be a suitable trade-o� between response time and result quality. Studies of the behaviour
of journalists performing searches with a digital photo archive have indicated that browsing is an essential search
strategy, and that response time was a key issue \ : : : journalists did not seem to have much time to �nd `the best'
photo. Rather they tended to make acceptable selections.".4,5

Relevance feedback has been shown to be extremely useful in text retrieval applications,6 and it is now being
applied in some CBIRSs.7{9 By augmenting the query with features from relevant retrieved images, a query can be
produced which better represents the user's information need. Since human perception of image similarity is both
subjective and task-dependent,10{12 we believe relevance feedback to be an essential component of a CBIRS.

Performance evaluation is a di�cult problem in CBIR, largely due to the subjectivity and task-dependence issues
mentioned above. For these reasons, we believe that evaluation must involve experiments with several real users.
Examples of such studies exist for medical CBIRSs,13 but much published work contains little or no quantitative
performance evaluation. The CBIR community still lacks a commonly accepted database of images, queries and
relevance judgments, such as the TREC databases used in text retrieval.

Henning.Mueller@cui.unige.ch, David.Squire@cui.unige.ch, Wolfgang.Mueller@cui.unige.ch, Thierry.Pun@cui.unige.ch
tel. ++41 22 705 7633, fax. ++41 22 705 7780

The evaluation of retrieval performance has been thoroughly studied in the text retrieval community.14 One
of the most common measures, the Precision vs. Recall (PR) graph,14,15 is now becoming more widely used in
CBIR.16,9,17 In this paper, performance results are presented in the form of PR graphs averaged over several users
and several queries. It is important to note that di�erent users frequently specify di�ering sets of images as relevant
for a given query image.

In this paper we describe several methods for reducing the response time of a CBIRS. These methods are based
either on search pruning or the parallel evaluation of a query. It is shown that the use of an inverted �le data
structure facilitates both these techniques. The search pruning methods presented here are \lossy", meaning that
the �nal response to the query is not guaranteed to be identical to that of the unpruned search. Results are presented
comparing the performance of these time-limited query evaluations with those for which there was no search pruning,
showing that fast response can be achieved without degrading system performance.

2. RELATED WORK

2.1. Image retrieval systems

The aim of a CBIRS is to retrieve images from a database based on their similarity to a query image or sketch. In
recent years many di�erent image retrieval systems have emerged, focusing on di�erent aspects of image retrieval or
di�erent kinds of databases. Since the general object recognition problem remains unsolved, such systems are either
restricted to limited domains, such as the detection of cars18 or buildings,19 or use some function of low-level image
features to attempt to capture a general measure of image similarity.

Such systems use example images, region(s)20 or prede�ned blobs21 as the query. The features extracted are
usually represented as a �xed length feature vector, and some distance metric or probabilistic model is applied to
�nd the most \similar" images in the collection. The features usually employed by such systems fall into the classes
of colour, texture and shape. Colour histogram intersection22,23 and texture features based on Gabor �lters24,9 or
wavelets25 are common.

Since search in high dimensional spaces is very computationally expensive, most systems try to �nd a compact
features representation (the \best" features) in an e�ort to provide acceptable system response time. Techniques
such as factor analysis26 or self-organizing maps27 have been used to reduce feature space dimensionality. A few
systems try to �nd the best features for each query: Dy et al.28 use the fact that di�erent features need to be used to
distinguish images from di�erent classes than to distinguish between subclasses of one class in a database of medical
images.

Another method for improving response time is the clustering of images into groups containing similar images.24,29

Although it can reduce response time, clustering can exclude large numbers of images from the querying/browsing
process which is very important. Moreover, since image similarity is not a �xed notion, any �xed boundaries in a
system are potentially dangerous.

2.2. Text retrieval systems

Compared to CBIR, text retrieval is a mature �eld. Originally driven by libraries and the needs of the legal
communities in countries with precedent-based legal systems, text retrieval is now an essential component of world
wide web search engines such as Yahoo and AltaVista. Text retrieval researchers have been investigating techniques
for indexing millions of documents using thousands of features (words) for more than thirty years.30,14,31 Despite
this long experience, most image retrieval researchers do not seek to use this great body of knowledge to improve
their systems. Text and images have been seen to be too di�erent to be accessed in the same way.

Inverted �les are the most common data structure used in text retrieval. An inverted �le contains an entry for
every possible feature (word) which consists of a list of the images (documents) which contain that feature, the
frequency of occurrence of that feature in the collection, and possibly the frequency of that feature in each image.
The text retrieval community has developed techniques for building and searching inverted �les very e�ciently.31

The key realization is that in such systems both queries and stored objects are sparse: they have only a small subset
of all possible features. Search is thus restricted to the subspace spanned by the query.

Whilst it is true that the low-level features used in most CBIRSs are at a very di�erent semantic level from the
words in texts, the same retrieval methods can be used if the features are suitably sparse. Witten et al. propose

several methods for search pruning in an inverted �le-based database.31 In this work we apply some of these methods,
adapted to the requirements of image retrieval.

3. THE Viper SYSTEM

The Viper system, inspired by text retrieval systems, uses a very large number of simple features.� The present
version employs both local and global image colour and spatial frequency features, extracted at several scales, and
their frequency statistics in both images and the whole collection. The intention is to make available to the system
low-level features which correspond (roughly) to those present in the human vision system.

More than 80000 features are available to the system. Each image has O(103) such features, the mapping from
features to images being stored in an inverted �le. The use of such a data structure, in conjunction with the feature
weighting scheme discussed below, means that the integration of text annotations is completely natural: textual
features can be treated in exactly the same way as visual ones.

3.1. Features

3.1.1. Colour features

Viper uses a palette of 166 colours, derived by quantizing HSV space into 18 hues, 3 saturations, 3 values and 4
grey levels. Two sets of features are extracted from the quantized image. The �rst is a colour histogram, with empty
bins are discarded. The second represents colour layout. Each block in the image (the �rst being the image itself)
is recursively divided into four equal-sized blocks, at four scales. The occurrence of a block with a given mode color
is treated as a binary feature. There are thus 56440 possible colour block features, of which each image has 340.

3.1.2. Texture features

Gabor �lters have been applied to texture classi�cation and segmentation, as well as more general vision tasks.24,32

We employ a bank of real, circularly symmetric Gabors, de�ned by

fmn(x; y) =
1

2��2m
e
�
x2+y2

2�2m cos(2�(u0mx cos �n + u0my sin �n)); (1)

wherem indexes �lter scales, n their orientations, and u0m gives the centre frequency. The half peak radial bandwidth
is chosen to be one octave, which determines �m. The highest centre frequency is chosen as u01 = 0:5, and u0m+1

=
u0m=2. Three scales are used. The four orientations are: �0 = 0, �n+1 = �n + �=4. The resultant bank of 12 �lters
gives good coverage of the frequency domain, and little overlap between �lters. The mean energy of each �lter is
computed for each of the smallest blocks in the image. This is quantized into 10 bands. A feature is stored for each
�lter with energy greater than the lowest band. Of the 27648 such possible features, each image has at most 3072.
Histograms of the mean �lter outputs are used to represent global texture characteristics.

3.1.3. Feature weighting and relevance feedback

As discussed above, relevance feedback can produce a query which better represents a user's information need. Viper
uses relevance feedback, in conjunction with feature weighting schemes inspired by those used in text retrieval.33

Some modi�cations were necessary since the image features used can not always be treated in the same way as words
in documents. The weighting function can depend upon the term frequency tf j (frequency of feature j in the image)
and collection frequency cf j (frequency of the feature j in the entire database) of the feature, as well as its type
(block or histogram). The motivation for using term frequency and collection frequency is very simple: features
with high tf characterize an image well; features with high cf do not distinguish that image well from others.33 We
consider a query q containingN images i with relevances Ri 2 [�1; 1]. The frequency of feature j in the pseudo-image
corresponding to q is

tf qj =
1

N

NX
i=1

tf ij � Ri: (2)

�Visual Information Processing for Enhanced Retrieval. Web page: http://cuiwww.unige.ch/~viper/

Viper weighting functions make use of a base weight

wf 0kqj =

(
tf qj for block features

sgn(tf qj) �min
�
abs

�
tf qj

�
; tf kj

	
for histogram features

: (3)

(The second case is a generalized histogram intersection.) Two di�erent logarithmic factors are used, which depend
upon cf :

lcf 1j =

(
log(1

cf j
) for block features

1 hist.
lcf 2j =

(
log(1

cf j
� 1 + �) for block features

1 hist.
: (4)

� is added to avoid overows. We investigated a variety of weighting functions in an earlier study.34 The weighting
function used for the experiments reported in the present work is:

classical idf: wf 2 = wf 0kqj �
�
lcf 1j

�2
: (5)

(6)

For each image k, using weighting method l, a score slkq is calculated:

slkq =
X
j

wf lkqj : (7)

Scores for all images containing features present in the query are maintained in a scoreboard.

Unlike the text retrieval case, we have several groups of features of di�erent kinds: local colour, global colour,
local texture and global texture. These groups have very di�erent numbers of features and very di�erent distributions
of term and collection and frequencies. In this work we investigate the separate evaluation and normalization of each
group before the calculation of a �nal score. This allows the inuence of groups with di�ering numbers of features
to be balanced (e.g. in any image there are many more features describing local texture than global colour).

3.2. Retrieval performance evaluation

To measure the performance of our system we used a database of 2500 heterogeneous real-world colour images
provided by T�el�evision Suisse Romande. These images are extremely diverse and there are few groups of very
visually similar images. Three users searched the entire database manually for images relevant to 14 query images.
The queries were nearly all best described at the semantic level, by phrases such as \soccer crowd" or \hospital
scene". Thus it is very hard for a system with only low level features to give good query results. Some example
query images can be seen in Figure 1.

(a) soccer crowd (b) child with gun (c) laboratory (d) hospital scene

Figure 1. Example query images

The sets of relevant images chosen by each user di�ered greatly, both in the number of images selected and also
in the actual images. The number of images in the sets varied between three and 36, with an average of 19. Even
for the same query image, one user selected four relevant images and another 36.

In order to demonstrate the great importance of relevance feedback, for each user all the relevant images in the
�rst 20 images returned for the initial query were used as positive feedback for a second query. Negative feedback
was not used in this study. This automatized relevance feedback is certainly not optimal: a trained user can do much
better with using both positive and negative feedback.

PR graphs were then calculated, average over queries and users, in order to show the retrieval performance both
before and after relevance feedback.

4. RESPONSE TIME EVALUATION

The evaluation times reported in this work are measured on a Sun Ultra 10 with 256 MB of memory and an 8 GB
hard disk. The inverted �le is read from the disk every time a query is evaluated; the other information is stored
in memory. Evaluation times were measured using the C internal function for time measurements, which has a
resolution of 0.01 seconds and measures elapsed processor time. As a second time measurement we used the C clock
function, which returns the time of day with millisecond resolution. Elapsed time measure in this way varies greatly,
since it is inuenced by other processes running on the machine and network tra�c, which we could not control.
For non-parallel queries these times were essentially the same. For parallel query evaluation, they varied much more
widely, since inter-processor communication is strongly inuenced by the network tra�c.

The time taken by Viper to evaluate a query depends strongly on the number of features in the query. Individual
images have a widely varying numbers of features, usually between 500 and 3000 in our database. The number of
features in a query increases with the number of input images, albeit sublinearly. Multiple image queries might have
up to 10000 or more features.

4.1. Evaluation times for individual features

The time taken to evaluate a given feature depends strongly on the collection frequency of this feature, since this
determines the number of calculations and disk accesses required to update the scoreboard. Figure 2 shows the
the evaluation times for groups of 50 features for both a single and a multiple image query. For these queries, the
evaluation of 50 features takes between 0.01 and 0.49 seconds. Very similar results are obtained for other queries.
Features are evaluated in order sorted by weight (see Equation 5). It is clear that the �nal features to be evaluated
are very costly (i.e. those with low weights and thus high collection frequencies).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000 2500

T
im

e
in

 s
ec

on
ds

Number of features evaluated

(a) single image query

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

e
in

 s
ec

on
ds

Number of features evaluated

(b) multiple image query

Figure 2. Evaluation time for 50 features for a query with 2674 features and a feedback query with 9283 features

Considering Figure 3, it is clear that the time taken for feature evaluation is strongly correlated with collection
frequency. More frequent features need more disk accesses and calculations because they occur in a greater numbers of
images. Moreover, these computationally expensive features generally receive lower weightings than the less frequent
features, and thus they contribute less to the �nal image scores.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500

C
ol

le
ct

io
n

fr
eq

ue
nc

y

Number of features evaluated

(a) single image query

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
C

ol
le

ct
io

n
fr

eq
ue

nc
y

Number of features evaluated

(b) multiple image query

Figure 3. Collection frequencies of the features for a single and a multiple image query

Since it is clear that the last features evaluated take most of the time, it is interesting to know how much these
features actually inuence the �nal result of the query. In order to study this, we tracked the ranks of the images
known as the �nal top ten during the evaluation of the query. This was done for a single image query with 2673
features and a multiple image query with 9283 features. The results can be seen in Figure 4.

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

R
an

k

Number of features evaluated

1
2
3
4
5
6
7
8
9

10

(a) initial query

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
an

k

Number of features evaluated

1
2
3
4
5
6
7
8
9

10

(b) with feedback

Figure 4. Development of the ranking of the �nal top ten images

The order of the �nal top ten becomes relatively clear even at quite an early stage. This is especially so in the
multiple image query. In the single image query, all the top ten images are already in the top 40 after 50% of the
features have been evaluated. For the multiple image query this is the case after only 10% of the features have been
evaluated.

5. METHODS FOR REDUCING QUERY EVALUATION TIME

Methods for reducing query evaluation time fall into two general classes. Evaluation can be stopped when it is known
that the top n ranked images can no longer change (a \lossless" method), or one can decide to prune the search
while tolerating some (small) changes in the �nal image ranking (a \lossy" method). When choosing between these
classes, it is important to know whether di�erent results are necessarily worse results, and if so, to what extent.

Earlier experiments indicated that lossless pruning did not give a great gain in speed, so here we concentrate on
lossy methods. The performances of the pruned evaluation methods are compared with that of the unpruned system,
in order to assess the impact on response accuracy.

The only lossless method reported in this paper is basic parallel access to the features. The inverted �le facilitates
parallel access to features as there is no need for writing accesses or synchronization. It even allows us to have a
number of small inverted �les, each containing the features of one feature group. Thus resources can be used more
e�ciently.

5.1. Reducing the number of images evaluated

This pruning method is based on the fact that images which have a low score after the most highly weighted features
have been evaluated are not very likely to be highly ranked after all features have been evaluated. The update of
the scores of such images can thus be stopped early. Disk access is not reduced by this method, but calculation time
is. In order to evaluate the impact of this method, the number of images retained in the scoreboard was reduced to
to 100, 200 and 500. These reductions were done after 10, 20 and 50% of the features had been evaluated.

In order to be able to compare the the performance of the pruned searches with that of the non-pruned version,
the scores for all images must be calculated, and the resulting list then reduced to the same number as the pruned
versions. The PR graphs are continued using the expected precision for randomly distributed responses after this
point. Here all lists were reduced to 100 images before comparison.

Figure 5 shows that in most cases the pruned versions do not perform worse than the unpruned system.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Unpruned system
200 after 50%
100 after 50%
500 after 20%
200 after 20%
100 after 20%
200 after 10%

(a) initial feedback

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Unpruned system
200 after 50%
100 after 50%
500 after 20%
200 after 20%
100 after 20%
200 after 10%

(b) with feedback

Figure 5. PR graphs for scoreboard pruning

Table 1 shows that time savings of up to 30% can be achieved, with very little loss in accuracy. As would be
expected from Figure 2, the evaluation time is dependent on the percentage of the features which are evaluated
before the cut-o� as well as on the number of images to which the list is reduced. We would suggest that a reduction
of the scoreboard to 100 images after 20% of the features have been evaluated as a suitable trade-o� between speed
and accuracy.

No. images retained Cuto� point Average evaluation time
100 20% 1.38s
100 50% 1.45s
200 10% 1.41s
200 20% 1.43s
200 50% 1.47s
500 20% 1.50s

unpruned 2.02s

Table 1. Evaluation times for scoreboard pruning.

5.2. Reducing the number of features evaluated

Figure 4 shows that the �nal top ten images were in the top ten quite early in the query evaluation. This suggests
that query evaluation could be stopped after a certain percentage of features without seriously a�ecting performance.
Since the low-weighted features are very computationally expensive, we can expect a better than linear reduction
in computation time. To evaluate this method, performance was evaluated for cuto� points of 20, 50, 80 and 90
percent.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Unpruned system
90%
80%
50%
20%

(a) initial query

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Unpruned system
90%
80%
50%
20%

(b) with feedback

Figure 6. PR graphs for cuto� after various percentages of features evaluated

Figure 6 shows that only the curve for cuto� after 20% percent of features is notably worse that the unpruned
case. The other cuto�s even give better performance in some parts of the PR graph, although not signi�cantly. This
could mean though that some of the very frequent features are essentially noise.

Cuto� point Average evaluation time
20% 0.09s
50% 0.28s
80% 0.72s
90% 0.96s

unpruned 2.02s

Table 2. Evaluation times for cuto� after various percentages of features evaluated

Table 2 shows the great improvements provided by this pruning technique. By reducing the number of features
evaluated by only 10% the evaluation time is more than halved. Evaluating 20% of the features takes less than 5%

of the full evaluation time, but the performance is signi�cantly worse than that of full evaluation. This mode still
might be useful if an extremely quick response is needed, or if the the user just wants to browse the images { some
noise may perhaps even be desirable.

5.3. Parallel access to features

The parallelization of the inverted �le access is very easy and there is no cost for synchronization. Consequently,
large improvements could be expected. On the other hand, in the absence of a dedicated cluster, parallelization
makes us dependent on network tra�c, which we cannot control. We used PVM (Parallel Virtual Machine) as a
parallelization library.

The features for each of the four feature groups were evaluated by processes running on separate machines. This
allowed us to change the weighting scheme so that each feature group was separately normalized (see x3.1.3).

Figure 7 shows that this improves retrieval performance in our experiment signi�cantly. A non-parallel version
of the separate feature normalization was implemented so that results could be better compared.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Normal
Each feature group normalized

(a) initial query feedback

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Normal
Each feature group normalized

(b) with feedback

Figure 7. PR graphs for the standard version and for separately normalized feature groups

processor time real time
normal feature access 2.02s 2.03s
separately normalized 2.86s 3.77s

parallel version 0.59s 11.51s

Table 3. Comparison of evaluation times for parallel and non-parallel feature evaluation

Table 3 shows that the processor time is signi�cantly reduced in the parallel version, though network tra�c
destroyed this advantage. This suggests that more attention must be paid to inter-process communication.

5.4. Combining methods

The easiest combination of pruning methods to implement is that of scoreboard and feature pruning. Figure 8 shows
that only the curve for cuto� after 20% of features is signi�cantly worse than that for the evaluation of all features.

The di�erences in performance between the combination of scoreboard and feature pruning and feature pruning
alone are thus very small whereas, as shown in Table 4, the gain in speed is between 10 and 30 percent, which is
signi�cant.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Unpruned system
After 20% Scoreboard to 100, after 80% end
After 20% Scoreboard to 100, after 50% end
After 10% Scoreboard to 100, after 20% end

(a) initial query

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Unpruned system
After 20% Scoreboard to 100, after 80% end
After 20% Scoreboard to 100, after 50% end
After 10% Scoreboard to 100, after 20% end

(b) with feedback

Figure 8. PR graphs for various combinations of scoreboard and feature pruning

Pruning method Average evaluation time
scoreboard to 100 after 20%, cuto� after 50% 0.23s

cuto� after 50% 0.28s
scoreboard to 100 after 20%, cuto� after 80% 0.52s

cuto� after 80% 0.72s
scoreboard to 100 after 10%, cuto� after 20% 0.08s

cuto� after 20% 0.09s

Table 4. Comparison of evaluation times for parallel and non-parallel feature evaluation

The combination of the parallel access methods with the pruning methods could o�er further improvements. Each
feature group could be pruned separately. This great potential, since the di�erent feature groups have very di�erent
collection and document frequency characteristics and thus should be pruned in di�erent ways.

Scoreboard reduction is especially important for the parallel version because it shortens the lists which need to
be transmitted over the network, making it less dependent on network tra�c. Future experiments will be performed
in order to discover the best ways of combining all the methods.

6. CONCLUSIONS

This paper addresses an issue which we believe is often ignored in CBIRS studies: the need to investigate ways
of reducing response times for queries. We propose to this end three strategies which are both fairly simple to
implement and e�ective, where e�ectiveness means low response time with simultaneously good retrieval performance
as measured by precision/recall curves. All experiments have been conducted using the Viper system, a CBIRS based
on inverted �les and relevance feedback techniques. The image database used contains 2500 pictures, each of them
being described by at most a few thousand features from a set of about 80'000.

The three strategies for decreasing response time are: 1) reducing the number of images evaluated, 2) reducing the
number of features evaluated, 3) parallel access to features. For a given retrieval quality, the �rst strategy provides
time savings of up to 30%, which is already a noticeable improvement. The second strategy may yield much higher
decreases in response time, down to about 5% of the original one. This might, however, lead to a decrease in retrieval
accuracy; a tradeo� between speed and accuracy has to be chosen by the user depending on his needs. The third
strategy, parallel access to features, allows the search load to be balanced on di�erent computers, and to have smaller
inverted �les to access. It o�ers perhaps the largest potential, especially when the number of features and feature
groups gets bigger. Finally, we suggest how these three strategies can be combined in e�ective ways.

ACKNOWLEDGEMENTS

This work was supported by the Swiss National Foundation for Scienti�c Research (grant no. 2000-052426.97).

REFERENCES

1. J. Nielsen, \The need for speed." Alertbox (web page: http://www.useit.com/alertbox/9703a.html), March
1997.

2. A. P. Berman and L. G. Shapiro, \E�cient content-based retrieval: Experimental results," in IEEE Workshop
on Content-based Access of Image and Video Libraries (CBAIVL'99), pp. 55{61, (Fort Collins, Colorado, USA),
22 June 1999.

3. J. Nielsen, Usability Engineering, Academic Press, Boston, MA, 1993.

4. M. Markkula and E. Sormunen, \Searching for photos - journalists' practices in pictorial IR," in The Challenge
of Image Retrieval, A Workshop and Symposium on Image Retrieval, J. P. Eakins, D. J. Harper, and J. Jose,
eds., Electronic Workshops in Computing, The British Computer Society, (Newcastle upon Tyne), 5{6 February
1998.

5. M. Markkula and E. Sormunen, \End-user searching challenges indexing practices in the digital photo archive,"
Information Retrieval , 1999. (to appear).

6. G. Salton and C. Buckley, \Improving retrieval performance by relevance feedback," Journal of the American
Society for Information Science 41(4), pp. 288{287, 1990.

7. M. E. Wood, N. W. Campbell, and B. T. Thomas, \Iterative re�nement by relevance feedback in content-
based digital image retrieval," in Proceedings of The Fifth ACM International Multimedia Conference (ACM
Multimedia 98), pp. 13{20, (Bristol, UK), September 1998.

8. Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra, \Relevance feedback: A power tool in interactive content-based
image retrieval," IEEE Transactions on Circuits and Systems for Video Technology 8, pp. 644{655, September
1998. (Special Issue on Segmentation, Description, and Retrieval of Video Content).

9. D. M. Squire, W. M�uller, H. M�uller, and J. Raki, \Content-based query of image databases, inspirations from text
retrieval: inverted �les, frequency-based weights and relevance feedback," in The 10th Scandinavian Conference
on Image Analysis (SCIA'99), (Kangerlussuaq, Greenland), June 7{11 1999.

10. F. Mokhtarian, S. Abbasi, and J. Kittler, \E�cient and robust retrieval by shape content through curvature
scale space," in Image Databases and Multi-Media Search, A. W. M. Smeulders and R. Jain, eds., pp. 35{42,
Intelligent Sensory Information Systems, Faculty of Mathematics, Computer Science, Physics and Astronomy,
Amsterdam University Press, (Kruislaan 403, 1098 SJ Amsterdam, The Netherlands), August 1996.

11. D. M. Squire and T. Pun, \A comparison of human and machine assessments of image similarity for the organi-
zation of image databases," in The 10th Scandinavian Conference on Image Analysis (SCIA'97), M. Frydrych,
J. Parkkinen, and A. Visa, eds., pp. 51{58, Pattern Recognition Society of Finland, (Lappeenranta, Finland),
June 1997.

12. Y. H. Kim, K. E. Lee, K. S. Choi, J. H. Yoo, P. K. Rhee, and Y. C. Park, \Personalized image retrieval with
user's preference model," in Multimedia Storage and Archiving Systems III (VV02), C.-C. J. Kuo, S.-F. Chang,
and S. Panchanathan, eds., vol. 3527 of SPIE Proceedings, pp. 47{55, (Boston, Massachusetts, USA), November
1998.

13. C.-R. Shyu, A. Kak, C. Brodley, and L. S. Broderick, \Testing for human perceptual categories in a physician-
in-the-loop CBIR system for medical imagery," in IEEE Workshop on Content-based Access of Image and Video
Libraries (CBAIVL'99), pp. 102{108, (Fort Collins, Colorado, USA), 22 June 1999.

14. G. Salton, \The state of retrieval system evaluation," Information Processing and Management 28(4), pp. 441{
450, 1992.

15. J. Tague-Sutcli�e, \The pragmatics of information retrieval experimentation, revisited," in Readings in Infor-
mation Retrieval, K. Spark Jones and P. Willett, eds., Multimedia Information and Systems, ch. 4, pp. 205{216,
Morgan Kaufmann, 340 Pine Street, San Francisco, USA, 1997.

16. J. R. Smith and S.-F. Chang, \VisualSEEk: a fully automated content-based image query system," in The
Fourth ACM International Multimedia Conference and Exhibition, (Boston, MA, USA), November 1996.

17. R. Srihari, Z. Zhang, and A. Rao, \Image background search: Combining object detection into content-based
similarity image retrieval (CBIR) systems," in IEEE Workshop on Content-based Access of Image and Video
Libraries (CBAIVL'99), pp. 97{101, (Fort Collins, Colorado, USA), 22 June 1999.

18. B. Ozer, W. Wolf, and A. N. Akansu, \A graph based object description for information retrieval in digital image
and video libraries," in IEEE Workshop on Content-based Access of Image and Video Libraries (CBAIVL'99),
pp. 79{83, (Fort Collins, Colorado, USA), 22 June 1999.

19. Q. Iqbal and J. K. Aggarwal, \Applying perceptual grouping to content-based image retrieval: Building images,"
in Proceedings of the 1999 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'99), pp. 42{
48, IEEE Computer Society, (Fort Collins, Colorado, USA), June 23{25 1999.

20. B. Moghaddam, H. Biermann, and D. Margaritis, \De�ning image content with multiple regions of interest," in
IEEE Workshop on Content-based Access of Image and Video Libraries (CBAIVL'99), pp. 89{93, (Fort Collins,
Colorado, USA), 22 June 1999.

21. S. Belongie, C. Carson, H. Greenspan, and J. Malik, \Color- and texture-based image segmentation using
EM and its application to content-based image retrieval," in Proceedings of the International Conference on
Computer Vision (ICCV'98), (Bombay, India), January 1998.

22. A. Vellaikal and C.-C. J. Kuo, \Content-based image retrieval using multiresolution histogram representation,"
in Digital Image Storage and Archiving Systems, C.-C. J. Kuo, ed., vol. 2606 of SPIE Proceedings, pp. 312{323,
(Philadelphia, PA, USA), October 1995.

23. A. Gupta and R. Jain, \Visual information retrieval," Communications of the ACM 40, pp. 70{79, May 1997.

24. W. Ma and B. Manjunath, \Texture features and learning similarity," in Proceedings of the 1996 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR'96), pp. 425{430, (San Francisco, California), June
1996.

25. R. Zarita and S. Lelandais, \Wavelets and high order statistics for texture classi�cation," in The 10th Scandi-
navian Conference on Image Analysis (SCIA'97), M. Frydrych, J. Parkkinen, and A. Visa, eds., pp. 95{102,
Pattern Recognition Society of Finland, (Lappeenranta, Finland), June 1997.

26. T. Pun and D. M. Squire, \Statistical structuring of pictorial databases for content-based image retrieval sys-
tems," Pattern Recognition Letters 17, pp. 1299{1310, 1996.

27. K. Han and S.-H. Myaeng, \Image organization and retrieval with automatically constructed feature vectors,"
in Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR'96), H.-P. Frei, D. Harman, P. Sch�auble, and R. Wilkinson, eds., pp. 157{165,
(Z�urich, Switzerland), August 1996.

28. J. G. Dy, C. E. Brodley, A. Kak, C.-R. Shyu, and L. S. Broderick, \The customized-queries approach to CBIR
using using EM," in Proceedings of the 1999 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR'99), pp. 400{406, IEEE Computer Society, (Fort Collins, Colorado, USA), June 23{25 1999.

29. A. Vellaikal and C.-C. J. Kuo, \Hierarchical clustering techniques for image database organization and summa-
rization," in Multimedia Storage and Archiving Systems III (VV02), C.-C. J. Kuo, S.-F. Chang, and S. Pan-
chanathan, eds., vol. 3527 of SPIE Proceedings, pp. 68{79, (Boston, Massachusetts, USA), November 1998.

30. K. Sparck-Jones, \The Cran�eld tests," in Information Retrieval Experiment, K. Sparck-Jones, ed., pp. 256{284,
Butterworth-Heinemann, Oxford, U.K., October 1981.

31. I. H. Witten, A. Mo�at, and T. C. Bell, Managing gigabytes: compressing and indexing documents and images,
Van Nostrand Reinhold, 115 Fifth Avenue, New York, NY 10003, USA, 1994.

32. A. Jain and G. Healey, \A multiscale representation including opponent color features for texture recognition,"
IEEE Transactions on Image Processing 7, pp. 124{128, January 1998.

33. G. Salton and C. Buckley, \Term weighting approaches in automatic text retrieval," Information Processing and
Management 24(5), pp. 513{523, 1988.

34. D. M. Squire, W. M�uller, and H. M�uller, \Relevance feedback and term weighting schemes for content-based im-
age retrieval," in Third International Conference On Visual Information Systems (VISUAL'99), D. P. Huijsmans
and A. W. M. Smeulders, eds., no. 1614 in Lecture Notes in Computer Science, pp. 549{556, Springer-Verlag,
(Amsterdam, The Netherlands), June 2{4 1999.

