
UNIVERSITE DE GENEVE

CENTRE UNIVERSITAIRE
D'INFORMATIQUE
GROUPE VISION

Date:

No
July 8, 1999

99.03

TECHNICAL REPORT

VISION

Hunting moving targets: an extension to Bayesian

methods in multimedia databases

Wolfgang M�uller David McG. Squire Henning M�uller

Thierry Pun

Computer Vision Group

Computing Science Center, University of Geneva

24 rue du G�en�eral Dufour, CH - 1211 Geneva 4 SWITZERLAND

e-mail: Wolfgang.Mueller@cui.unige.ch, David.Squire@cui.unige.ch,

Henning.Mueller@cui.unige.ch, Thierry.Pun@cui.unige.ch

Accepted for: Multimedia Storage and Archiving Systems IV (VV02), volume 3846 of SPIE
Proceedings, Boston, Massachusetts, USA, September 20{22 1999. (SPIE Symposium on Voice,
Video and Data Communications).

Abstract

It has been widely recognised that the di�erence between the level of abstraction
of the formulation of a query (by example) and that of the desired result (usually an
image with certain semantics) calls for the use of learning methods that try to bridge
this gap. Cox et al. have proposed a Bayesian method to learn the user's preferences
during each query.

Cox et al.'s system, PicHunter [2], is designed for optimal performance when the
user is searching for a �xed target image. The performance of the system was evaluated
using target testing, which ranks systems according to the number of interaction steps
required to �nd the target, leading to simple, easily reproducible experiments.

There are some aspects of image retrieval, however, which are not captured by
this measure. In particular, the possibility of query drift (i.e. a moving target) is
completely ignored. The algorithm proposed by Cox et al. does not cope well with
a change of target at a late query stage, because it is assumed that user feedback is
noisy, but consistent.

In the case of a moving target, however, the feedback is noisy and inconsistent
with earlier feedback.

In this paper we propose an enhanced Bayesian scheme which selectively forgets
inconsistent user feedback, thus enabling both the program and the user to \change
their minds". The e�ectiveness of this scheme is demonstrated in moving target tests
on a database of heterogeneous real-world images.

relevance feedback, query drift, target testing, Bayesian methods, user modelling

1 Introduction

With large unannotated image and video collections becoming more and more common,
there arises the need for tools which perform content based image retrieval. Much attention
has been given to systems supporting the user in �nding images similar to one example,
enabling the user to give feedback [4, 7]. Usually the problem of �nding a useful seed has
been ignored. Most of the systems give the user the possibility to get random choices of
images in the database. This is suitable for testing query methods, but clearly insu�cient,
if one actually wants to use the database for real queries. What one needs here is a process,
which provides a suitable seed.

However, little attention has been paid to systems which support the browsing process
[2, 9], i.e. a process in which the user moves freely through feature space, by expressing
his or her preferences. To our knowledge these systems were specialised browsers without
nearest-neighbour capabilites. This paper focuses on the browsing process and puts it in
context with query by example, showing that these capabilities are complementary.

The method for measuring performance of browsing systems established in [2] is the
target test: the user is shown an image, which he or she then has to �nd in the database.
The number of interaction steps is recorded. A good system minimises the number of
interaction steps necessary for �nding an image.

One point of criticism against the target testing method is its failure to capture the
often gradual, sometimes sudden, changing of mind users experience during longer query
sessions. In this paper we describe TrackingViper , a system which takes the possibility of
query drift into account. Along with it we propose an extension of the target test which
permits the measurement of the performance of systems which try adaptively to help the
user in the browsing process.

In the following section 2 we describe the Bayesian method used by PicHunter as well
as our modi�cations to its model, which rely on a model of user feedback inconsistency: if

1

the user gives feedback which is strongly inconsistent with earlier judgements, this can be
caused by a change in what he or she is looking for. Di�erent models will be described.

It follows section 3 which establishes a new benchmark for the performance of image
databases: the moving target test. It is put in context with other performance measures.

2 Bayesian methods for browsing queries

2.1 PicHunter: a static target searching system

Information retrieval systems usually try to �nd (more or less explicitly) documents �
which have a high probability of being wanted by the user given the query. Here the query
can be text as well as an example. In most systems the user is given the chance to improve
the result by giving feedback, thus looking for � which optimise

p(� wanted by the userjquery, feedback):

This paradigm has been largely adopted by the image database community. In image
databases, the situation however is quite di�erent, due to the inability of the user to
formulate pictorial queries as precisely as a textual or a SQL query. In many cases the
goal will be to �nd one or more interesting images in the collection, without being able to
furnish a suitable seed for a query by example. This leads to the browsing query case, in
which an explicit query does not exist, and in which we look for images which optimise
p(� wanted by the userjfeedback over several steps). The main di�erence from the normal
IR case is that relevance feedback is not seen as an improvement to an already well-phrased
query, but as a query language for a user who is unable to formulate ad-hoc queries.

Cox et al. try to solve this rephrased query problem by maintaining a probability
distribution which contains for each document � of the database the probability that � is
the target of the query, i.e. the goal the user has in mind when starting the query. To
this end the system, PicHunter, gives at each interactive step a small set of images, the
suggestion S, to the user. The user responds by giving some feedback F to the system.
The update is done using the classic Bayesian rule:

p(T = �jF; S) =
p(F jT = �; S)p(T = �; S)

p(F; S)
(1)

In this formula p(F jT = �; S) is the user model: it describes the expected feedback, if we
know that the target is � and the suggestion S had been given. p(T = �; S) is the prior
knowledge of the target's whereabouts, and p(F; S) (the probability that F is given at the
same time that S is suggested) is a normalising factor. The suggestions S are chosen to
minimise the expected number of comparisons needed to �nd the target using an entropy
argument. The feedback given by the user is given by comparison, i.e. the user decides
which of the suggested images are closer to the target than other suggested images. Thus
the elementary feedback a user can give is one comparison between two images: we write

user (T : i; j) :, The user considers i closer than j to the target T (2)

User modelling in PicHunter is based on the assumption that one is in the possession of
a distance metric d (i; j) for images i and j, which captures the human \internal" similarity
measure to such an extent that one can assume that it is perfect except for blurring by
\mistakes" of the user:

p(F jT) =
1

1 + e
d(T;j)�d(T;i)

�

(3)

2

where � is a free parameter which has to chosen before the process by the implementor.
In the case of lim�!0 (3) converges to

p(F jT) =

8><
>:
1 d (T; i) < d (T; j)

0:5 d (T; i) = d (T; j)

0 d (T; i) > d (T; j)

(4)

This limit case of no blurring shows two potential weaknesses of this method:

1. � obviously depends on the image collection as well as the intended users. More
importantly, it depends also on the metric employed for the search.

2. Once an image � is discarded from the set of potential targets (i.e. p(T = �) � 1)
by \wrong" feedback, it is di�cult for � to be reconsidered.

These two points are equally important for the moving target problem which we address
in this paper.

2.2 TrackingViper : modelling the changing mind

2.2.1 Motivation

The shortcomings of the PicHunter can be summarised by saying that it would be desirable
to take our uncertainty regarding the user model into account, using stronger methods
than blurring. This need is emphasised by another observation: In the beginning of a real{
world browsing query the user usually has a target in mind. During the query, however,
the user often changes his or her target as a function of what he or she thinks can be found
in the database.

One method for coping with this is to provide the user with an explicit means to
express changes of mind. However, this would place the burden on the user to decide
clearly, if he or she changes his or her ideas about the target or not, and how much these
changes a�ect user feedback given in previous steps.

We propose here a framework which consists of weighting the di�erent comparisons
according to the degree to which they are trusted. Comparisons which are in less contra-
diction with others are more trusted.

Consider the simple case of a modi�ed Hi-Lo game (the Hi-Lo game is classic program-
ming exercise for beginners: let the user �nd a real number in a given interval). Consider
�nding a number t in the interval between [0; 1]. One person, A, asks B which one of the
points x1; x2 is closer to t. If the B is good at arithmetics, there is no hesitation: A has
to choose x1 and x2 such, that they are equidistant from the midpoint. By doing this, A
can expect to half the set of points still to be considered. The problem will be reduced
to either �nding a point in [0; 0:5) or (0:5; 1]. However, if you consider A and C, where C
sometimes has little problems with addition subtraction and comparing numbers, A will
either employ the same tactics as PicHunter i.e. \blurring" and/or A will deliberately
choose x1 and x2 so that \surprising" results can be detected.

This observation leads us to a tradeo�: a sequence of comparisons chosen so as to
strictly minimise the number of steps to be taken will each time halve the distribution,
but it will not allow for the detection of inconsistencies except at the moment where there
are no more points to consider. A \no-surprises" sequence of comparisons, however, will
start at one end of the interval and consider every point.

3

2.2.2 A framework for the de�nition of inconsistent user behaviour

For our de�nition of inconsistence of user feedback, we regard it as convenient to express
(1) rather as an intersection of probabilistic sets. A probabilistic set over a set of items I,
I, is a set of pairs (p; i) where p 2 [0; 1] denoting the probability of an item that an i 2 I
is in the set.

I := f(p; i)ji 2 I and p 2 [0; 1]g (5)

We de�ne now the intersection between two probabilistic sets I, J with weighting
constant w (to be explained below), using the function f as

\ (I;J ; w; f) := f(f(pI ; pJ ; w); i)j(pI ; i) 2 I and (pJ ; i) 2 J g (6)

We write the multiplication of the probability of each element in a probabilistic set I

� (�;I) := f(�p; i)j(p; i)) 2 Ig (7)

We can write the normalisation (in the probability distribution sense of the word) of
a probabilistic set, as

Normalise (I) := �

1P

(p;i)2I p
;I

!
(8)

If the suggestion was S, the user feedback F and the knowledge prior to a learning
step is described by the probabilistic set I, the learning step (1) becomes

J = \ (I; f(p(T = XjS; F); X)jX 2 databaseg; 1;multiply) (9)

with multiply(a; b; c) = a � b � c.
We will call f(p(T = XjS; F); X)jX 2 databaseg the feedback set of F (and T):

Feedback (F; S; T) := f(p(T = XjS; F);X)jX 2 databaseg (10)

Thus we can regard the learning process as a sequence of intersections of probabilistic
sets. The probabilities p of the members (p; i) of the resulting sets represent a plausibility
of i being the target. Accordingly we de�ne: a weighted set of user feedback steps Fk
with weighting constants wk, f(w1; F1); :::; (wN ; FN)g is consistent under a plausibility
predicate Pred (given the combination function f) i�

9(p; i) : Pred(p; i) and

0
@(p; i) 2 \

k2f1;:::;Ng

(Feedback (Fk; Sk; T) ; wk; f)

1
A (11)

i.e. there is at least one image in the intersection of the feedback sets which is considered
to be plausible by the predicate Pred. For short, we write

Consistent (f(w1; F1); :::; (wN ; FN)g) i�f(w1; F1); :::; (wN ; FN)g is consistent:

The wk in equation (11) correspond to our \belief" into Feedback (Fk; Sk; T) as result
of a useful comparison. Our learning problem is thus to be augmented by the search for
wk which make (wk; Fk) consistent. If one wants to view this in a more Bayesian style, wk

modi�es the user model, depending on the belief in the comparisons. This leaves us the

4

choice of a function which �nds for the Fk proper wk. Furthermore, we have to choose a
combination function f and the user model.

First of all we want to emphasise the temporal component: we assume that more recent
comparisons are more credible than older ones. Without this assumption, our relations
become symmetric, and we have no way of deciding which comparison is to be weighted
lower if two comparisons are inconsistent.

Knowing that computing time is limited, one possibility is to make each wk a function
of the feedback given in the m previous and m following steps

(Fk�m; Fk�m+1; :::; Fk+m�1; Fk+m)

for some small m. In this paper we take a more rule based approach given by the following
algorithm:

N is the number of feedback steps given so far.

1. i! N

2. wi !

(
1 Consistent (f(w1; F1); :::; (wi�1; Fi�1)g)

0 otherwhise

3. until (i = 1 or # fwkjk 2 fi; :::; Ng and wk = 0g) > # do i! i� 1 and goto 2

This leaves us with the choice of a suitable Pred, the choice of #, as well as the choice
of a combination function f . The Pred is a simple threshold comparison. In this paper
we chose f(a; b; c) = multiply(a; b; c).

The user model was chosen as

p(F jT) =

(
1 d (T; i) � d (T; j)

0:1 d (T; i) > d (T; j)
(12)

Similar to the original papers about PicHunter, we estimated the expected entropy
gain by sampling several suggestions Si from the current distribution, and taking the Si
which maximised the decrease of entropy in the current distribution. In order to generate
suggestions which enable inconsistent user feedback, we slightly favour S which minimisePN

k=1wk, i.e. which force forgetting of user feedback.

2.2.3 The system

The tests in the present work were performed using Viper [7], a system which uses tech-
niques inspired by text retrieval (inverted �les), on a very large quantised feature space.
Viper obtains in Query-By-Example good Precision-Recall in interactive time for data-
bases of moderate size (O(10000) images). The features have proven to be highly selective,
and in relatively good accordance with human perception.

Viper 's features and scoring algorithms yield a distance measure which is not symmet-
ric. This is in accordance to psychophysical evidence, that human similarity perception
is not symmetric [8]. However, for use in the present framework, asymmetry of the dis-
tance measure is undesirable. The distance measure is also required to ful�l the triangle
inequality. A symmetric distance matrix ful�lling these constraints to a suitable extent
was built for the experiments.

Viper is designed for
exibility. Our present system allows the use of browsing queries
and nearest neighbour queries in parallel. This capability was used for some of our tests.

5

3 Evaluation

The normal QBE process corresponds to deep exploration of the feature space in the
immediate neighbourhood of the example. The relevance feedback usefully leads to a
deformation of the feature space in order to better capture the user's view of similarity,
and to capture the di�erences between the user's example and the user's information need.
How much the feature space chosen for a program corresponds to the average information
need of the unexperienced user can be measured in precision{recall plots and derived
measures, as well as using other methods using user relevance data.

Target testing, however, captures the mobility of the user within the feature space.
He is supposed to move in an autonomous fashion in feature space, thus �nding an image
whose characteristics are not known to the database. In this target testing and query
by example are testing two complementary properties which should be present in every
CBIRS: Browsing query systems help in query formulation, while good QBE systems have
a good query performance.

In most real cases the user will be rather interested in approaching the target using
a browsing query mechanism. After a certain point however, he or she will pro�t from a
good and quick overview over the images which are inside a certain region of the feature
space which can be obtained using a nearest neighbour query.

The weakness of the target testing method, however, is its focus on one target image.
This generates mainly two problems:

� arguably, the user will react in a di�erent way, if knowing the whole image to be
found, than if he or she knows only a semantic category the wanted image falls in

� equally arguably, a real user will change his or her mind during the browsing process.
Giving a target image to the test person is like telling the buyer which jeans to buy
before sending him or her into the shopping mall and guaranteeing that he or she
will �nd it in one of the businesses in the mall.

We consider that giving a target image to the user is the one method to verify that
di�erent results for di�erent systems are not only due to the fact that the test persons are
more or less demanding. However, we suggest to model the inevitable change of mind by
giving the user a sequence of targets he or she has to visit. This simulates the moves of
the target and the ability of the system to follow moves and to detect abrupt changes of
the target. This method of testing we call moving target test.

In the experiments described in the following subsections we give some moving target
tests, for \simple" images taken from a complex real{world database containing 2500
images (TSR2500) provided by T�el�evision Suisse Romande, the broadcasting corporation
of the French speaking part of Switzerland. Before the presentation of these results we
give a short summary of simulations which capture the \best case".

3.1 Simulation

We simulate a user who uses exactly the same distance metric as the program. This user
tries to �nd a sequence of four images in the database. The number of tries for each
retrieval is counted.

Of course, these simulations do not prove anything about real users. However, they
show, that the requirements for the use of this method are met by the distance measure-
ment, combination function and algorithm. If the user does not make any \mistakes", he

6

or she will be able to �nd a sequence of images. Because of the perfection of the simulated
user the simulations should provide an upper limit for the performance of this method.

We did two kinds of simulations:

1. a simulation, in which the simulated user gave at each step negative feedback for
all images but the best match to the target, giving positive feedback for the best
match. Here the simulated user had to see 38 images on average for reaching each
query target.

2. a simulation in which it gave negative feedback to the worst match and positive
feedback to the best match. Here the simulated user had to see 75 images on average
for reaching each query target.

Simulations of a TrackingViper without forgetting (this is close to PicHunter with
� = 0) suggest that without forgetting feedback, performance seriously degrades after
�nding the �rst target.

3.2 User Experiments

For moving target tests we chose four scenarios:

Viper with and without feedback memory for previous feedback steps: As a refer-
ence, Viper was used with a random seed to �nd the targets of the target sequence.
20 images were visible at each feedback step.

TrackingViper : TrackingViper memorised the last 10 feedback steps and cumulated the
knowledge gained from older feedback in an additional eleventh feedback set. # was
ignored. At each step 5 images were shown.

Split screen: In addition to the suggestions (5 images) provided by TrackingViper 15
images from a Viper nearest neighbour query were shown. Using this, the user had
the opportunity to explore the feature space given by the feedback images chosen by
the user. The fact that 15 images were shown from a nearest neighbour query, and
only 5 from a suggestion, is not a contradiction. The choice of a suggestion takes
time linear to its size, while a nearest neighbour query scales much more favourably.

As a general modi�cation to the original PicHunter papers, in our experiments, the
user had explicitely to give both positive and negative feedback, thus leaving space for
indi�erence in case of uncertainty of the user.

Choice of test images: Preliminary experiments had shown that the TSR2500 data-
base contains many very small clusters of images, which are so semantically di�erent from
each other that it is di�cult for the user to judge image similarity (Geman et al. [3] write
in this context of \virtually random" comparison outcomes). For the test in this paper we
chose four images from large clusters in the database: banknotes, trademarks and
ags,
sunsets (very dark background), airplanes (mostly sky).

Test persons two test persons with image processing background performed multiple
experiments with TrackingViper and modi�ed versions. As it will be described and dis-
cussed below we had learning e�ects during some of the tests.

7

Viper without feedback memory The user was started from a random set of 20
images, giving feedback in order to move in the direction of the next target. Here the
user was able to give feedback at each step. This feedback was taken into account for the
calculation of a new set of 20 images resembling the given feedback and then forgotten.
420�100 images had to be seen by the user for �nding all images in each target sequence.
The details can be found in table 1.

Image Test 1 Test 2 Test 3 Test 4 Test 5

$1 bill 80 60 120 100 100

Honda 40 80 80 140 140

Sun 60 120 120 260 120

747 140 60 80 100 100

Sum: 320 320 400 600 460

Table 1: This table summarises the outcomes of 5 moving target tests (Test 1 through 5)
with Viper without feedback memory. The test consisted in �nding a one dollar bill, a
Honda logo, an image of the sun, and an image of a
ying Boeing 747 in this sequence.
Each time the user started at a di�erent random state. In each cell of the table the number
of images seen to �nd the next target is noted (e.g. in the �rst test, the user needed to
see 140 images, to �nd the 747 after having found the sun image.) The complete number
of images seen in each complete moving target test is summed up in the last column.

Viper with feedback memory Here the user also started with a random set of 20
images, giving feedback in order to move in direction of the next target. In contrast to the
method described in the paragraph above, the user was able to cumulate feedback over
several steps.

We did two runs of �ve tests with the same expert user. We observed, that the user
learned quickly, how to optimise his target testing performance when using Viper . He was
able to reduce the number of images seen before �nding the last target by approximately
a third.

On �rst use by the user, 420 � 140 images had to be seen by the user for �nding all
images in each target sequence. The details can be found in table 2.

Image Test 1 Test 2 Test 3 Test 4 Test 5

$1 bill 120 100 140 100 100

Honda 80 80 60 220 80

Sun 80 40 440 80 40

747 20 120 40 80 100

Sum: 300 340 680 480 320

Table 2: This table summarises the outcomes of 5 moving target tests (Test 1 through 5)
with Viper with feedback memory. The test task was exactly the same as in table 1.

After having gained some experience, only 260� 40 images had to be seen by the user
for �nding all images in each target sequence. The details can be found in table 3.

TrackingViper Five experiments with an identical target sequence were performed,
starting at di�erent starting points. The user needed 65�11 iterations for performing the

8

Image Test 1 Test 2 Test 3 Test 4 Test 5

$1 bill 100 120 100 100 60

Honda 100 40 60 80 80

Sun 80 80 20 60 40

747 40 40 40 40 40

Sum: 320 280 220 280 220

Table 3: This table summarises the outcomes of 5 moving target tests (Test 1 through 5)
with Viper with feedback memory. The test task was the same as in table 1.

task; the user therefore scanned on average 82 images in 16.5 iterations before �nding a
target of the target sequence. This is approximately 15 times better than chance. While
these results are quite satisfactory (better than to Viper before learning) and surprisingly
close to the simulation results, the user found his situation quite di�cult: images chosen
by the system are not necessarily close to the images marked positive by the user. Often
this is desired. Sometimes, however, the user has the impression that his or her feedback
had been \misunderstood".

320�55 images had to be seen by the user for �nding all images in each target sequence.
The details can be found in table 4. Within the experiment the performance, attained by
the test user using TrackingViper did not increase.

Image Test 1 Test 2 Test 3 Test 4 Test 5

$1 bill 110 85 75 130 85

Honda 105 75 40 135 105

Sun 100 25 85 50 105

747 45 45 140 80 50

Sum: 360 230 340 395 310

Table 4: This table summarises the outcomes of 5 moving target tests (Test 1 through 5)
with TrackingViper . The test task was exactly the same as in table 1.

Surprisingly, for the chosen queries, the simulation results are only slightly better than
those of a skilled human user. This might be explained by the fact that a human user can
consciously induce small contradictions, if he or she does not like the current suggestion.
The system then will open up the distribution by forgetting parts of the old feedback.

Split screen TrackingViper/Viper This method was a reaction to the subjective
impressions of our test user when performing TrackingViper queries. At each iteration 20
images were shown to the user. 5 of them were a suggestion by TrackingViper , 15 the
result of a nearest neighbour query, which used the feedback given in the last step. As
one can see, these results are clearly the best of our tests.

Also the subjective impression when using this version was satisfactory: the Track-

ingViper part provide the user with good seeds which in the present simple setting were
quickly usable for successful nearest neighbour queries.

On average, only 225� 30 images had to be seen by the user for �nding all images in
each target sequence. The details can be found in table 5.

9

Figure 1: The last step, when trying to �nd the second of our four test images for the split
screen (Viper/TrackingViper). The �rst line shows images suggested by TrackingViper ,
the next lines show the results of a nearest neighbour query on the feedback given in the
last step. In the third row on second position, you can see a part of the target image.

10

Image Test 1 Test 2 Test 3 Test 4 Test 5

$1 bill 80 20 60 140 100

Honda 40 20 60 60 40

Sun 60 40 20 20 20

747 60 100 60 40 80

Sum: 240 180 200 260 240

Table 5: This table summarises the outcomes of 5 moving target tests (Test 1 through 5)
with TrackingViper . The test task was exactly the same as in table 1. These results are
the best over all tested methods.

4 Conclusion

In this paper we presented an approach to tracking query drifts in target searches. In
target searches the user tries to �nd an item (target) in the database starting from a small
random sample.

The approach was implemented in the system TrackingViper . In order to measure
the performance of the system we made user experiments with expert users. They used
the system to �nd a number of targets in a �xed sequence. Targets were simple images
taken from a dataset of 2500 images. Future tests will involve random targets, as well as
non-expert users.

Our user experiments gave two main results:

1. TrackingViper enables the user to move in feature space by giving feedback. Track-
ingViper is able to follow changes of the user's wishes by forgetting parts of the user
feedback deemed to be inconsistent with newer user feedback. Moving to a new tar-
get from and old, found target seems not to be more costly than explicitly starting
a new query.

2. A combined system of a target searching system and a nearest neighbour QBE
system was preferred by the user and performed best in our test. It enables the user
to choose quickly between browsing movement in the feature space and intensifying
his or her search in some point of the feature space.

Our results suggest that one should not see target searching systems as a stand-alone
method, but rather as a convenient, e�cient way of solving the problem of �nding a
suitable seed for nearest neighbour (QBE) queries.

In the future we want to explore more of the parameters given in section 2.2. At present
we have the subjective impression that our system forgets too late, and sometimes too
completely. We are especially interested in a method which does not have any parameters
which have to be chosen before the query process. Furthermore, we would like to adapt
our target searching methods so that they scale better with the database size than does
the present explicitly maintained probability distribution. The results given in section 3.2
for \Viper with feedback memory" encourage this approach.

References

[1] I. J. Cox, M. L. Miller, T. P. Minka, and P. N. Yianilos. An optimized interaction
strategy for bayesian relevance feedback. In Proceedings of the 1998 IEEE Confer-

11

ence on Computer Vision and Pattern Recognition (CVPR'98), pages 553{558, Santa
Barbara, California, USA, June 1998.

[2] I. J. Cox, M. L. Miller, S. M. Omohundro, and P. N. Yianilos. Target testing and
the PicHunter Bayesian multimedia retrieval system. In Advances in Digital Libraries

(ADL'96), pages 66{75, Library of Congress, Washington, D. C., May 13{15 1996.

[3] D. Geman and R. Moquet. A stochastic feedback model for image retrieval. Technical
report, Ecole Polytechnique, 91128 Palaiseau Cedex, France, 1999.

[4] T. Minka. An image database browser that learns from user interaction. Master's
thesis, MIT Media Laboratory, 20 Ames St., Cambridge, MA 02139, 1996.

[5] T. V. Papathomas, T. E. Conway, I. J. Cox, J. Ghosn, M. L. Miller, T. P. Minka, ,
and P. N. Yianilos. Psychophysical studies of the performance of an image database
retrieval system. In B. E. Rogowitz and T. N. Pappas, editors, Human Vision and
Electronic Imaging III, volume 3299 of SPIE Proceedings, pages 591{602, July 1998.

[6] D. M. Squire, W. M�uller, and H. M�uller. Relevance feedback and term weighting
schemes for content-based image retrieval. In D. P. Huijsmans and A. W. M. Smeulders,
editors, Third International Conference On Visual Information Systems (VISUAL'99),
number 1614 in Lecture Notes in Computer Science, pages 549{556, Amsterdam, The
Netherlands, June 2{4 1999. Springer-Verlag.

[7] D. M. Squire, W. M�uller, H. M�uller, and J. Raki. Content-based query of image data-
bases, inspirations from text retrieval: inverted �les, frequency-based weights and rel-
evance feedback. In The 10th Scandinavian Conference on Image Analysis (SCIA'99),
Kangerlussuaq, Greenland, June 7{11 1999.

[8] A. Tversky. Features of similarity. Psychological Review, 84(4):327{352, July 1977.

[9] J. Vendrig, M. Worring, and A. W. M. Smeulders. Filter image browsing: Exploiting
interaction in image retrieval. In D. P. Huijsmans and A. W. M. Smeulders, edi-
tors, Third International Conference On Visual Information Systems (VISUAL'99),
number 1614 in Lecture Notes in Computer Science, pages 147{154, Amsterdam, The
Netherlands, June 2{4 1999. Springer-Verlag.

12

