
D
R

A
FT

UNIVERSITE DE GENEVE

CENTRE UNIVERSITAIRE
D'INFORMATIQUE
GROUPE VISION

Date:

No

First version: October 6, 1999

This version: October 28, 1999
99.04

TECHNICAL REPORT

VISION

MRML: Towards an extensible standard for

multimedia querying and benchmarking

Draft Proposal

Wolfgang M�uller Zoran Pe�cenovi�c1 Arjen P. de Vries2�

David McG. Squire Henning M�uller Thierry Pun

Computer Vision Group

Computing Science Center, University of Geneva

24 rue du G�en�eral Dufour, CH - 1211 Geneva 4, Switzerland

1Laboratoire de Communications Audio-Visuelles and Groupe de

l'Ergonomie des Syst�emes Intelligents

Ecole Polytechnique F�ed�erale de Lausanne, Switzerland

2Department of Computer Science

University of Twente, The Netherlands

e-mail: Wolfgang.Mueller@cui.unige.ch,

Zoran.Pecenovic@lcav.de.ep.ch

�Arjen was happy to test that thanks still worked.



D
R

A
FT

Abstract

In recent years, the need for databases which query multimedia data by content has
become apparent. Many commercial and non{commercial research groups are trying
to ful�ll these needs.

The development of research can be described as moving in two directions

� search for new, useful query and interaction paradigms

� deeper research to improve the performance of systems that have adopted a given
query paradigm.

The search for new better performance given a query paradigm has led to \clusters" of
systems which are similar in their interaction with the user, and which give a certain
set of interaction capabilities to the user.

It is already visible, that research will move towards systems which enable the user
to formulate multi{paradigm queries in order to further improve results.

As a consequence of the above, there is the need for

� A common mechanism for shipping multi{paradigm queries and their results ,
which assures that the right query processor processes the right query.

� For each paradigm a common language, which enables to formulate queries in
this paradigm.

This mechanism, of course, has to be extensible in order not to constrain ongoing
research.

We propose MRML (Multimedia Retrieval Markup Language), a new XML-based
language that provides an extensible mechanism for shipping multi{paradigm queries.
As a demonstration of its use, the current version of MRML already provides a de-
tailed extensible language for shipping Query{By{Example (QBE) queries in a CBIRS
(Content Based Image Retrieval) context.

In this article we highlight

� which advantages the use of MRML can have for use in the CBIRS and other
communities. Especially we show how our groups (Lausanne, Geneva) use
MRML to minimize programming work and to share user data, and howMRML

can be used for a common CBIRS benchmark.

� that MRML is explicitly designed to minimize the programming work imposed
by its use,

� how MRML can be extended towards other query paradigms,

In this paper, we also propose a development model, that will keep MRML an
open standard that is usable while it grows.

Keywords: multimedia database,interoperability,query language

1 Introduction

The development of research can be described as moving in two directions

� search for new, useful query and interaction paradigms

� deeper research to improve the performance of systems that have adopted a given
query paradigm.

The search for new better performance given a query paradigm has led to \clusters" of
systems which are similar in their interaction with the user, and which give a certain set
of interaction capabilities to the user.

1



D
R

A
FT

It is already visible, that research will move towards systems which enable the user to
formulate multi{paradigm queries in order to further improve results.

As a consequence of the above, there is the need for

� A common mechanism for shipping multi{paradigm queries and their results , which
assures that the right query processor processes the right query.

� For each paradigm a common language, which enables to formulate queries in this
paradigm.

Ful�lling this need would also enable the di�erent communities

� to share user interfaces. At present almost every group has its own interface suiting
its purposes. However, many interfaces are very much alike.

� to share implementations without sharing the code. Comparing the resulting systems
of di�erent groups of a research domain would be easier, if one could make them
accessible to outside scripts without publishing the actual code.

The query shipping{mechanism should be designed in a way that it does not constrain
ongoing and future research regarding both the search for optimal query formulation for
each paradigm and the research for new query paradigms for MMDB queries. In short,
the query{shipping mechanism should separate the communication problem from the query
formulation problem, letting research groups evolve freely to �nd good domain speci�c
query formulation schemes.

MRML, as proposed in this paper, provides such a shipping{mechanism. In addition
to the requirements stated above it was designed for making the use of it as simple as
possible, thus allowing groups with exotic development environments and little manpower
to be able to use MRML.

MRML in the current version provides a complete solution for QBE in CBIRS, which
was the initial use of MRML.

MRML is an XML based language for the communication between MMDB server and
user interface. In this paper we demonstrate the utility of the framework provided by
MRML by giving the example how we use MRML in our Viper system.

The paper is organized as follows:
First we describe the general framework with emphasis on extensibility. After this we give
the �rst application of MRML which is the use in our CBIRS systems together with the
CIRCUS interface written by one of us (Z.P.).

2 The design of the MRML query shipping framework

Common positions always limit the freedom of the individual. However, in this case the
design is easily extensible. In this section we propose a development strategy which will
preserve the freedom of the individual research groups, while keeping the standard.

The primary goals of our design are:

1. Extensibility is, as we said above, our primary goal. Main problem here is to provide
a framework which permits independent growth of the products of di�erent research
groups (followed by periodical code merging).

2. We want to leave the developer the freedom of choice of the implementation language.
A standard like this is unlikely to be adopted by the research community, if it works
only with a given \mainstream" computing environment.

2



D
R

A
FT

3. We want the use of the communication protocol to be as independent from third
party libraries as possible. A group should be able to provide its own tools within
�nite time.

Our choice is to use an XML (eXtensible Markup Language) DTD (Document Type
De�nition { a grammar) for the speci�cation of our communication protocol, together
with speci�cations for the transmission of messages, and for extensions of the protocol.

When making this choice we saw mainly the alternative of using EJB (Enterprise Java
Beans), CORBA, and other methods of remote procedure calls. However, we feared strong
links with languages (Java/EJB) or large program packages (CORBA). Moreover, the use
of an XML application implies a common user log �le format for multimedia databases.
Please note that the DTD is a way of expressing the capabilities of client and server, i.e.
they can negotiate the kinds of query that are allowed.

The attractiveness of XML is further increased by the existence of free tools in nu-
merous programming languages. XML has been designed explicitly for simplifying parser
design. XML has to be parsable by deterministic parsers, thus it is simple to implement
one's own XML/MRML parsers.

2.1 The structure of XML and \graceful degradation"

The structure of XML is similar to that of HTML, which stems from their common an-
cestry, i.e. SGML (Standard Generalized Markup Language): an XML document can be
seen as a tree of \elements" which themselves contain other elements. The content of each
node of the document tree is a list of attribute-value pairs, as well as a sequence of nodes
(possibly interleaved with text). This structure is encoded using so called \tags" for the
elements. The \opening tag" of an element with type t and attribute anAttribute being
set to x would be <t anAttribute="x">. The \closing tag" of an element t would be
< =t>.

This free structure is constrained by a Document Type De�nition (DTD) which is a
grammar for the tree structure. The details can be found in [?].

\Graceful degradation" is the key to MRML's extensibility. It means \build extensions
in a way, that ignoring them causes minimal harm". Examples will be given in x6 which
contains the MRML{DTD as well as its description. We believe that they demonstrate
the feasibility of this approach.

2.2 The main MRML tags

Each message sent can be one of the following:

ihandshake The �rst text sent when the user connects to the database will be an ihand-
shake message. ihandshake contains the name of the user. Via the DTD one can
detect the abilities of the interface.

shandshake The server will respond to the ihandshake message by giving a shand-
shake message. This message contains a list of sessions the user has done using
the database, as well as a property sheet speci�cation.

Sessions give the user the possibility to perform across{session learning using the
system.

MRML property sheets are a description of parameters variables and their depen-
dencies which permit the interface program to build property sheet GUI elements,

3



D
R

A
FT

which will permit the user to con�gure the database freely. How freely is entirely
the decision of the server. Using this mechanism we sidestep the problem of de�ning
a set of common database con�guration parameters. We also give the possibility to
send interfaces of di�erent complexity to di�erent kinds of users, etc. .

icon�guration The user is now free to use the con�guration options at will. If so,
at each step the interface will send an icon�guration message. We require that
this icon�guration message will have to consist of at least the con�guration of the
algorithm used. However, as it was said before, more can be con�gured if necessary.

If the user does not use the con�guration facilities, a set of default values is used,
until the user does use the con�guration facilities.

inewsession,irenamesession For session management the user can choose to open a
new session (the old one will be closed then), or to rename the current one the non-
existence of an iclosesession tag is not an accident: in a WWW scenario, we cannot
to rely on users properly closing their sessions.

iquerystep Fill this at your will. In this paper we propose an XML-based query language
for QBE in CBIRS which will be described at x??, page ??.

iresult The result is a list of URLs together with calculated similarities and information
on which panel the information is to be displayed.

error Server and interfaces are able to send error messages to each other.

Each of the described messages uses other \helper"{XML{elements. The relationship is
further described in the DTD.

3 Connection protocol of MRML client and Server

The interface will connect to a socket of the server, and send a text in MRML. After that
it will wait for a response in MRML. After receiving the response the connection will be
shut.

...more and some �gures to come here...

4 MRML for interfacing and benchmarking in CBIRS

In current CBIRS research there emerge three groups of query techniques which are used
in the di�erent systems, most of the time in combination:

� Query By Example (QBE) and browsing queries: the user gives an image, and
retrieves similar images using the system. He or she can increase the quality of the
result using relevance feedback (for example [8]). As a modi�cation of this scheme:
\browsing queries", which could be summarized as QBE without �rst example (e.g.
used by [3, 5,?]). In any of these cases the user feedback is limited to stating the
relevance of display items.

� Query By Sketch/Query By Segment: these systems require more interaction from
the user, who has to draw an example or who has to mark regions of interest in the
example he or she has given [1, 4].

4



D
R

A
FT

� Annotation and Query on Annotation, eventually linking annotation to low{level fea-
tures: this, essentially, is extending standard database technology to image databases
[2, 7,?].

As one can see, each of these groups necessitates di�erent activity from the user, as well
as a di�erent method of query formulation. Video and audio, again, need other methods
of interaction.

The problem of query by example in content based image retrieval systems, is partic-
ularly simple in terms of the interaction required. In this paper, we use QBE in CBIRS
as an example for the use and usefulness of MRML:

MRML, as it is now, will be able to help the CBIRS community

� Improve interface design: Given that groups could improve a common interface
rather than starting their own complete system from scratch, the design, as well
as the usability of interfaces of MM databases should improve. The area of MM
databases could as well pro�t from new breakthroughs in HCI, which are to be
expected from research areas like e.g. emotional computing.

� MRML will help meta-query research: MRML as it is now allows simple scripts
to redirect one query (QBE) to several servers and collect their results. Once other
query paradigms are implemented in MRML, research on multi-paradigm and multi-
modal queries also will pro�t from the development

� MRML will facilitate the development of real{world applications which use new
research results (e.g. an CBIRS{plugin to the GNU Image Manipulation Program
[?]). This could be very helpful for evaluating the immediate use of current research.

� MRML will help exchange user data: The log �les of interaction between user and
content based multimedia retrieval systems are rarely exploited for improving the
system [3]. Logging the queries would provide a common format which could easily
be exchanged, thus giving the research area the possibility to bene�t from collected
experience, as suggested in [6]

� It is our opinion the most important point for the CBIRS community is that MRML
could be used as a common interface to a common benchmark for CBIRS, which
thus could easily be distributed and employed, thus supporting work on a common
image collection and benchmark.

We would like to emphasize that a common benchmark for image database is likely
to evolve strongly within short time, and thus needs a exible framework as a basis.

An immediate advantage for the CBIRS community would be the possible use of the
CIRCUS (Lausanne) interface developed by one of the authors (Z.P.).

4.1 Expressing Query By Example in MRML

A query will essentially be a tree of URLs together with user given relevance judgments
together with information to which panel the results should be sent. Why not a list? A
tree permits us to shorten the message: If we want to send a query to several algorithms
with slight modi�cations, we can formulate the common parts at the root of the tree, and
modify them in the inner nodes and in the leaves of the tree.

URLs in order to keep things open for true multimedia querying, queries do not send
binary data, but an URL as a pointer to such data.

5



D
R

A
FT

Figure 1: MRML-compliant CIRCUS interface after doing a query using a Viper server
and database

Panels Panels give interface builders and users the possibility to ask query results
distributed over several panels. [?], for example, is using this feature in their system.

5 Technicalities

5.1 MRML property sheets

MRML property sheets are a method to work around the fact that the a common set of
con�guration parameters for image databases is di�cult to �nd and probably awkward
to use. We suggest to achieve this by sending code which allows to build GUIs (i.e. the
subset you would need for con�guration of an algorithm), along with a speci�cation of
how to generate pieces of XML code from the GUI's state. This code is XML and it will
not be executed, so, to our knowledge, there is no inherent security hole.

We would like to describe the property sheets by explaining needs of systems we know
and how they are met by the property sheets.

5.1.1 A simple example

The \basic need" of a system would be to specify the collection, i.e. the database on which
the retrieval is to be performed. For testing and comparison it would be interesting to have
the choice between several algorithms (e.g. wavelet coe�cient/color histogram based).

6



D
R

A
FT

A choice out of a list of two elements:

<property id="p1"

type="subset"

caption="Collection"

visibility="visible"

sendtype="element"

sendname="algorithm"

minsubsetsize="1"

maxsubsetsize="1">

<property id="p2"

type="setelement"

caption="Dogs"

visibility="visible"

sendtype="attributetext"

sendvalue='id="algorithm1" collection="Dogs.db"'

defaultstate="selected"

>

</property>

<property id="p3"

type="setelement"

caption="Cats"

visibility="visible"

sendtype="attributetext"

sendvalue='id="algorithm1" collection="Cats.db"' />

defaultstate="unselected"

</property>

</property>

What does this do exactly?

� it de�nes a list of which the user is allowed to chose a subset of size between 1 and
1, i.e. an exclusive choice.

� When asked for its state this list will generate an element, i.e. an opening tag and
a closing tag. Content of this tag will be speci�ed as content of the outer property
tag (the one with id p1). The name of the generated element will be algorithm.

� The content of the the newly generated tag will be generated as follows: property
Elements p1 and p2 are identical in structure. They denote the elements of our set

7



D
R

A
FT

which can either be selected or unselected. If selected they send a text which will
be placed like an attribute (attributetext). This text will be 'id="algorithm1"

collection="Dogs.db"' or 'id="algorithm1" collection="Cats.db"', depend-
ing on which of the two list items is chosen by the user.

As a result: the piece of MRML above will enable the interface to set up a property
sheet which comprises a list of two items, of which one can be selected. Depending on the
selection, the interface will send either

<algorithm id="algorithm1" collection="Dogs.db"></algorithm>

or

<algorithm id="algorithm1" collection="Cats.db"></algorithm>

to the server (with the appropriate surrounding tags, of course). I.e. there is only one
algorithm, but the user is able to choose between two collections, and, as can be checked
using the DTD, correct MRML will be generated.

5.1.2 More complex: a realistic case for many current systems

Consider the case most current research systems: one tends to be working on several algo-
rithms, which are tested using di�erent image collections of varying size and characteristics
(e.g. the VisTex database [?] or parts of the Corel stock photo collection). Each of the
algorithms investigated will have several parameters which one would like to be able to
change during runtime, at least during testing and to get a feeling for the impact of each
of the parameters on the query results. Usually the parameters involved will be not the
same for each algorithm.

As a further complication, test data is not necessarily indexed for all query algorithms,
necessitating a choice of algorithms which changes when choosing the collection or vice
versa..

<property id="p1"

type="subset"

caption="Algorithm"

visibility="popup"

sendtype="element"

sendname="algorithm"

minsubsetsize="1"

maxsubsetsize="1">

<property id="p11"

type="setelement"

caption="18D continuous feature vector"

visibility="popup"

sendtype="attribute"

sendname="id"

8



D
R

A
FT

sendvalue="algorithm1"

defaultstate="selected"

>

<property id="p111"

type="subset"

caption="Collection"

visibility="popup"

sendtype="attribute"

sendname="collection"

minsubsetsize="1"

maxsubsetsize="1"

>

<property id="p1111"

type="setelement"

caption="Big Cats"

visibility="visible"

sendtype="value"

sendvalue="~viper/Big_Cats.db"

defaultstate="selected"

>

</property>

<property id="p1112"

type="setelement"

caption="Small Cats"

visibility="visible"

sendtype="value"

sendvalue="~viper/Small_Cats.db"

defaultstate="unselected"

>

</property>

</property>

<property id="p112"

type="subset"

caption="Metric"

visibility="popup"

sendtype="attribute"

sendname="metric"

minsubsetsize="1"

maxsubsetsize="1"

>

9



D
R

A
FT

<property id="p1121"

type="setelement"

caption="Euclidean"

visibility="visible"

sendtype="value"

sendvalue="1"

defaultstate="selected"

>

</property>

<property id="p1122"

type="setelement"

caption="Manhattan"

visibility="visible"

sendtype="value"

sendvalue="435"

defaultstate="unselected"

>

</property>

</property>

</property>

<property id="p12"

type="setelement"

caption="Inverted file of discretized features"

visibility="visible"

sendtype="attribute"

sendname="id"

sendvalue="algorithm2"

defaultstate="selected"

>

<property id="p121"

type="subset"

caption="Collection"

visibility="popup"

sendtype="attribute"

sendname="collection"

minsubsetsize="1"

maxsubsetsize="1"

>

<property id="p1211"

type="setelement"

caption="Dogs"

10



D
R

A
FT

visibility="visible"

sendtype="value"

sendvalue="~viper/Dogs.db"

defaultstate="selected"

>

</property>

<property id="p1212"

type="setelement"

caption="Small Cats"

visibility="visible"

sendtype="value"

sendvalue="~viper/Small_Cats.db"

defaultstate="unselected"

>

</property>

</property>

<property id="p121"

type="subset"

caption="Metric"

visibility="popup"

sendtype="attribute"

sendname="metric"

minsubsetsize="1"

maxsubsetsize="1"

>

<property id="p1221"

type="setelement"

caption="Best fully weighted"

visibility="visible"

sendtype="value"

sendvalue="22"

defaultstate="selected"

>

</property>

<property id="p1222"

type="setelement"

caption="Classic (tf.idf)"

visibility="visible"

sendtype="value"

sendvalue="5"

11



D
R

A
FT

defaultstate="unselected"

>

</property>

</property>

</property>

</property>

The example above shows exactly the described scenario: The user has the choice
between two algorithms, each of which can be con�gured by a simple choice, as in �rst
example. However, we have to nest property elements deeper than in the last example.

Again the root tag of the property sheet, p1, designs a list, from which exactly one
element has to be selected. When sending an XML message, it will send an algorithm

tag. The �rst child of p1, p11 is an element of the set described in p1. It designs the choice
of an algorithm which involves 18-dimensional continuous feature vectors. In di�erence to
the previous example p11 itself has two children, p111 and p112.

p111 permits the choice of a collection, as described above, p112 permits the choice
of an additional parameter, the selected metric for determining the distance between the
di�erent images.

The same applies for p12 and its descendants.
There are still two important topics:

1. What happens in terms of dialog dynamics, i.e. which elements will be visible and
selectable under which conditions?

Each element of the property sheet is only selectable when the all the ancestors of
the element are active and its parent is selected. We call a selectable element of a
property sheet active.

Because of the visibility="popup" declaration in p11 and p12, p111 through p112

will only pop up, if they are active.

2. Which XML will be generated from this property sheet? In general, XML is only
generated by elements that are active. p1 will open an XML element with the name
algorithm. p11, if active, will add an attribute with the name id and value
algorithm1. p111, will add the attribute collection, the value of which would
be either ~viper/Big_Cats.db or ~viper/Small_Cats.db, depending on which of
p1111 or 1112 is selected. In a completely analog way p112 will generate the
attribute metric.

So in this example, texts of the form

<algorithm id="algorithm1" collection="~viper/Small_Cats.db"

metric="1">

</algorithm>

will be generated. At the same time sensible dialog dynamics will be assured.

5.1.3 A more formal description of MRML property sheets

As it has become clear from the examples, GUIs sent using MRML property sheets are
in fact a tree of property sheets. Both the XML generated by the property sheet and the
dialog dynamics are de�ned using simple rules.

12



D
R

A
FT

Dialog dynamics A property element is visible on the screen, if

1. all its ancestors are visible

2. AND

� its parent is non{selectable OR selected

� OR its parent has the visibility="visible" attribute set.

selectability of property elements will be de�ned below.
A property element is active, if

1. all its ancestors are active

2. AND its parent is non{selectable OR selected

An active property element is de�ned as an element that can be used for its purpose, i.e.
it will be enabled on the GUI screen.

Generating XML XML is generated during a depth-�rst-traversal of the property

tree as follows:

� The XML string generated by a sequence of active elements is equal to the concate-
nation of the XML strings generated by each element. The sequence of concatenation
is equal to the physical sequence of property elements in the MRML text.

� The XML string generated by an inactive element is empty.

� The XML string generated by an active element is given by the sendtype of the
property element

sendtype="element": If there is any beginning of an opening tag in the XML gen-
erated by the ancestors of this property element, it will be ended by adding
an > to the text generated so far.

Afterwards this property element will generate the beginning of the opening
tag of an XML element with a name that is speci�ed by the attribute sendname,
followed by a space and the content of the attribute sendvalue. As an example:
if for a given element the sendname attribute has the value xxx, and the content
of the sendvalue attribute is 'myattribute="5"', the generated output will
be <xxx myattribute="5".

After that the children are evaluated in sequence and a closing tag of the element
will be generated. Before that, the opening tag will be ended, if necessary.

(/</xxx>/, in our example)

sendtype="attribute": If there is no beginning of an opening tag in the XML
generated by the ancestors of this property sheet no text will be generated.

If there is any beginning of an opening tag in the XML generated by the an-
cestors of this property sheet there are the following possibilities:

value is nonempty Generate the text given by the values of the attributes
sendname and sendvalue in the de�nition of this property. For ex-
ample sendname="myattribute" sendvalue="33" will lead to the text
myattribute="33" as output.

13



D
R

A
FT

value is empty begin an attribute de�nition with a name given by the value of
the attribute sendname. For example sendname="myattribute" sendvalue=""

will lead to the text myattribute= as output. The actual de�nition of the
value can be provided in two ways:

{ If the current property has an inherent value (i.e. is numeric, boolean
or textual), this value is taken, and thus the attribute de�nition will
be ended.

{ The value de�nition will be provided by a child.

sendtype="value": If there is no attribute de�nition, which has been begun by any
ancestor or sibling of this property element, no text is generated.

Otherwise either the inherent value or the value given by the attribute value
sendvalue will be used, as described above.

sendtype="attributetext": If there is no beginning of an opening tag in the XML
generated by the ancestors or siblings of this property sheet no text will be
generated.

Otherwise If there is any attribute de�nition which has been begun by an ances-
tor or sibling but which has not yet been closed, close this attribute de�nition
by adding "" .

Furthermore, add the text given by the content of the attribute sendvalue to
the current begun XML tag.

sendtype="children": This property element will only concatenate the XML code
generated by its children.

sendtype="none": This property element will not generate any code. It is only
useful when using it with type="reference" which will be be described below.

The building blocks of property sheets

5.1.4 type="reference": Enabling nesting of algorithms

...to be continued here...

6 Examples for extended MRML

...to follow soon.

7 Future work in the speci�cation of MRML

There are two main directions concerning further work on MRML and related goals.

1. Enhancing MRML: it is already clear at the time of writing, that MRML as is, very
exible, already very useful, but incomplete. We need to incorporate (at least):

� region queries

� text in queries

Here we are hoping for cooperation with working groups who are using these query
techniques in their systems. We would like to make MRML a \living standard",
always keeping language speci�cation and implementation date close together.

An analysis of what could be done in the future can be found in [?].

14



D
R

A
FT

2. Providing tools: In our opinion the best way of using the advantages created by
MRML is to pool common tools which can be used and exchanged within the research
community.

8 State and future of the implementation

At the time of writing we have a server which is already running under a \light" version of
MRML (dubbed 0.8, without property sheets, but the query formulation much the same as
presented in Appendix A), and the CIRCUS interface using this version of MRML. Until
the middle of November both will be extended to the current version of MRML. Both the
MRML treating code of the server as well as the interface will be published under (L)GPL
then.

References

[1] Serge Belongie, Chad Carson, Hayit Greenspan, and Jitendra Malik. Color- and
texture-based image segmentation using EM and its application to content-based im-
age retrieval. In Proceedings of the International Conference on Computer Vision
(ICCV'98), Bombay, India, January 1998.

[2] Ingemar J. Cox, Joumana Ghosn, Matt L. Miller, Thomas V. Papathomas, and Pe-
ter N. Yianilos. Hidden annotation in content based image retrieval. In IEEEWorkshop
on Content-based Access of Image and Video Libraries (CBAIVL'97), pages 76{81,
June 1997.

[3] Ingemar J. Cox, Matt L. Miller, Stephen M. Omohundro, and Peter N. Yianilos. Target
testing and the PicHunter Bayesian multimedia retrieval system. In Advances in
Digital Libraries (ADL'96), pages 66{75, Library of Congress, Washington, D. C.,
May 13{15 1996.

[4] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathon Ashley, Qian Huang,
Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David Steele,
and Peter Yanker. Query by image and video content: The QBIC system. IEEE
Computer, 28(9):23{32, September 1995.

[5] Wolfgang M�uller, David McG. Squire, Henning M�uller, and Thierry Pun. Hunting
moving targets: an extension to Bayesian methods in multimedia databases. In Sethu-
raman Panchanathan, Shih-Fu Chang, and C.-C. Jay Kuo, editors, Multimedia Storage
and Archiving Systems IV (VV02), volume 3846 of SPIE Proceedings, Boston, Mas-
sachusetts, USA, September 20{22 1999. (SPIE Symposium on Voice, Video and Data
Communications).

[6] Rosalind W. Picard. Toward a visual thesaurus. Technical Report 358, MIT Media
Laboratory Perceptual Computing Section, 20 Ames St., Cambridge MA 02139, 1995.

[7] John R. Smith and Shih-Fu Chang. VisualSEEk: a fully automated content-based
image query system. In The Fourth ACM International Multimedia Conference and
Exhibition, Boston, MA, USA, November 1996.

[8] J. Vendrig, M. Worring, and A. W. M. Smeulders. Filter image browsing: Exploiting
interaction in image retrieval. In Dionysius P. Huijsmans and Arnold W. M. Smeulders,

15



D
R

A
FT

editors, Third International Conference On Visual Information Systems (VISUAL'99),
number 1614 in Lecture Notes in Computer Science, pages 147{154, Amsterdam, The
Netherlands, June 2{4 1999. Springer-Verlag.

A The DTD of MRML

Here is the (at present partly) documented DTD of MRML:

<?xml encoding="US-ASCII" ?>

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Basic structure:

______________________________________

Messages are sent as MRML texts.

In order to make it easy for the server to know who connects,

each message is assigned the id of its session as an attribute.

The following

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!ELEMENT mrml (ihandshake

|shandshake

|iconfiguration

|inewsession

|irenamesession

|iquerystep

|sresult

|error

)>

<!ATTLIST mrml sessionid ID "default">

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

The Viper property sheet specification

______________________________________

Basic idea: send a property sheet together with a specification

what should be the XML output coming back.

Useful for configuring your database.

If this seems too complex for your case, please look at the

cheatsheet we prepared for you. (i.e. probably you will be able to do

what you want using a small subset of the features offered here)

16



D
R

A
FT

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!ELEMENT property (property)*>

<!ATTLIST property id ID #REQUIRED

type (multiset

|subset

|setelement

|boolean

|numeric

|textual

|clone

|reference) #REQUIRED

caption CDATA #IMPLIED

visibility (popup|visible) "visible"

sendtype (element

| attribute

| value

| attributetext

| children

| none) #REQUIRED

sendname CDATA #IMPLIED

sendvalue CDATA #IMPLIED

minsubsetsize CDATA #IMPLIED

maxsubsetsize CDATA #IMPLIED

from CDATA #IMPLIED

step CDATA #IMPLIED

to CDATA #IMPLIED

defaultstate CDATA #IMPLIED

>

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

END: The Viper property sheet specification

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

iconfiguration

______________

17



D
R

A
FT

Sending the configuration from the interface

to the server: at present just the "algorithm"

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-->

<!ELEMENT iconfiguration (algorithm)>

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

END: iconfiguration

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-->

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

An algorithm will be either an empty element with

attributes (add some at your will, it will talk with your

server anyway, and this is the server which sent the property

sheet), or a tree of algorithms.

What is the use of this?

Think of configuring meta queries. Together with properties

you get a powerful tool.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!ELEMENT algorithm (algorithm*)>

<!ATTLIST algorithm id ID #REQUIRED

collectionid CDATA "default">

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Handshake between server and interface

______________________________________

As a sign, it wants the connection, the interface sends

a message first. The server responds, specifying its

capabilities

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!-- ++++++++++++++++++++++++++++++++++++++++

Interface side: we send our name.

which protocol is spoken by the interface is coded in the

DTD.

++++++++++++++++++++++++++++++++++++++++-->

18



D
R

A
FT

<!ELEMENT ihandshake EMPTY>

<!ATTLIST ihandshake username CDATA #REQUIRED>

<!-- ++++++++++++++++++++++++++++++++++++++++

Server side: the server sends us

one list and a property sheet containing information about

- the available sessions for the user

(what are sessions? description follows)

- the available algorithms and how they can be combined

- which algorithm can be applied on which data collections

plus, of course, information how to give back this information

to the server.

Note, that the property sheet formalism would be flexible enough

to do all this with just one property sheet. However, we regarded

it useful to add some structure.

++++++++++++++++++++++++++++++++++++++++ -->

<!ELEMENT shandshake (ssessionlist,

salgorithmproperty)>

<!ELEMENT ssessionlist (ssession+)>

<!ELEMENT ssession EMPTY>

<!ATTLIST ssession id CDATA "default"

displayname CDATA "Default session">

<!ELEMENT salgorithmproperty (property)>

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

END: Handshake between server and interface

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Beginning and renaming sessions

_______________________________

We want to give the user the possibility to save the current

state into "sessions". This might be useful in the case that

a user has several classes of goals which s/he knows in advance.

The user can request a new session.

S/he can also request a name change for a session.

19



D
R

A
FT

Ending sessions is implicit:

we cannot afford being dependent on the user ending

his/her session in a "nice" way, so we do not

tempt programmers to do so

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!-- Interface side -->

<!-- send the desired feedback method together with

a name for the session -->

<!ELEMENT inewsession EMPTY>

<!ATTLIST inewsession sessionname CDATA #IMPLIED>

<!ELEMENT irenamesession EMPTY>

<!ATTLIST irenamesession id CDATA #REQUIRED

sessionname CDATA #REQUIRED>

<!-- -->

<!-- Server side -->

<!-- confirms session operation by sending name and id -->

<!ELEMENT ssession EMPTY>

<!ATTLIST ssession id CDATA #REQUIRED

name CDATA #REQUIRED>

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

END: Beginning and renaming sessions

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Simple user commands

____________________

(like e.g. back or forward

in the command history)

(at present the only commands)

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!ELEMENT iusercommand EMPTY>

<!ATTLIST iusercommand command (backward|forward) "backward"

steps CDATA #IMPLIED>

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

20



D
R

A
FT

END: Simple user commands

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

A query step

____________

A query is formulated using a tree structure. The semantics

of this is:

A parameter set in the root of a subtree will be passed on

to the subtree. Attributes can be overridden.

Each query has the possibility to say, which panel the result

is supposed to belong to.

We define the panel "P1" being the default panel,

thus freeing small programs from the obligation to

specify this.

At present we are only providing definitions for the "query" for

random images as well as for a quer by example(s).

With this construction

one is able to do quite complex

things (fun stuff!)

We require at each query step and each level af the "query tree"

the algorithm and the collection to be defined.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!ELEMENT iquerystep (iuserrelevancelist?,

iquerystep*)

>

<!ATTLIST iquerystep stepid CDATA #REQUIRED

panel CDATA "P1"

resultsize CDATA #IMPLIED

resultcutoff CDATA #IMPLIED

querytype (query|atrandom) "query"

algorithmid CDATA #IMPLIED

collectionid CDATA #IMPLIED

>

21



D
R

A
FT

<!-- List of URLs with user given relevances

Our way of specifying a QBE for images.

relevances vary from 0 to 1

-->

<!ELEMENT iuserrelevancelist (iuserrelevanceelement+)>

<!ELEMENT iuserrelevanceelement EMPTY>

<!ATTLIST iuserrelevanceelement userrelevance CDATA #REQUIRED

imagelocation CDATA #REQUIRED>

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

END: A query step.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Results for queries

___________________

each result image can be accompanied by the user given relevance,

as well as the similarity calculated by the program, based on the

feature space.

calculated similarities vary from 0 to 1

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!ELEMENT sresult (sresultelementlist?,sresult*)>

<!ATTLIST sresult panel CDATA "P1">

<!ELEMENT sresultelementlist (sresultelement+)>

<!ELEMENT sresultelement EMPTY>

<!ATTLIST sresultelement userrelevance CDATA #REQUIRED

calculatedsimilarity CDATA #REQUIRED

imagelocation CDATA #REQUIRED>

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

END: Results for queries

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

22



D
R

A
FT

<!-- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Error messages

______________

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -->

<!ELEMENT error EMPTY>

<!ATTLIST error message CDATA #REQUIRED>

23


