
Learning Feature Weights from User Behavior in
Content-Based Image Retrieval

Henning Müller, Wolfgang Müller,
Stéphane Marchand-Maillet, Thierry Pun

Computer Vision Group, University of Geneva
24 Rue du Général Dufour,

CH-1211 Genève 4, Switzerland

henning.mueller@cui.unige.ch

David McG Squire
Computer Science and Software Engineering

Monash University
Melbourne, Australia

ABSTRACT
This article describes an algorithm for obtaining knowledge
about the importance of features from analyzing user log
�les of a content-based image retrieval system (CBIRS). The
user log �les from the usage of the Viper web demonstration
system are analyzed over a period of four months. Within
this period about 3500 accesses to the system were made
with almost 800 multiple image queries. All the actions of
the users were logged in a �le.

The analysis only includes multiple image queries of the sys-
tem with positive and/or negative input images, because
only multiple image queries contain enough information for
the method described. Features frequently present in im-
ages marked together positively in the same query step get
a higher weighting, whereas features present in one image
marked positively and another image marked negatively in
the same step get a lower weighting. The Viper system of-
fers a very large number of simple features. This allows the
creation of exible feature weightings with high values for
important and low values for less important features. These
weightings for features can of course di�er between collec-
tions and as well between users. The results are evaluated
with an experiment using the relevance judgments of real
users on a database containing 2500 images. The results of
the system with learned weights are compared to the system
without the learned feature weights.

Keywords
long term learning, log �le analysis, content-based image
retrieval, web usage analysis, multimedia retrieval

1. INTRODUCTION
Much has been written about Relevance Feedback (RF) in
content-based image retrieval (CBIR) [18]. Most feedback
methods only takes into account one query step and the

knowledge obtained from older query steps of the same ses-
sion or of other query sessions is forgotten. Often, the feed-
back is limited to one positive image [16] or several positive
feedback images [4]. Only few systems o�er both positive
and negative feedback as Sur�mage [6, 27] and Viper [26].
Even these systems often have problems with too much nega-
tive feedback as described in [11], although solutions similar
to those already used in text retrieval (TR) [17] exist.

Image browsers like PicHunter [5] o�er the possibility to
have feedback over more than one step and thus to really
learn from the user interaction in order to �nd one target
image. Using a sequence of queries to discover the user's goal
creates another problem whenever the user changes the goal
of a query in the querying process. Solutions to this problem
referred to as \moving targets" are given in TrackingViper
[13].

Yet, existing learning algorithms mostly try to �nd out the
goal of a user over one or a few feedback steps. Minka [10]
proposes across-session learning for FourEyes in PhotoBook.
In [8], an approach to cluster images marked together posi-
tively and divide images marked negatively from the clusters
is explained. In the domain of collaborative �ltering [7], user
judgments have been used to propose new items to users
based on items being marked together positively by other
users. This has been applied to art images of a museum as
well [1]. The search for user preferences by giving positive
and negative examples for web pages has also been studied
[15]. Bayesian networks have been used to �nd out if an
unknown page might �t to the users' pro�le or not. This su-
pervised learning is out of the scope of this paper as we want
to use unsupervised learning techniques to avoid additional
work for the user. We also want to learn information for
new queries and not just improve one already known query
by augmenting important features.

In the domain of electronic commerce, log �les resulting
from web usage have been analyzed for a long time and the
knowledge from this analysis is employed to improve new
systems and to adapt them to the users' needs [28]. Part of
this research concentrates on analyzing the behavior of users
within webpages and the links they use [2]. In the domain
of electronic commerce, there are many di�erent concepts to
identify users and track their activities, but problems arise
with people just trying out pages and making very short



visits. Longer visits can be analyzed to facilitate the design
of a web page.

The quality of user data gained from the internet might
not be the highest. Nevertheless, we can learn from the
usage information, and the related analysis in this paper
shows that we can get qualitatively and quantitatively better
results, even by using potentially poor web user data.

2. THE VIPER SYSTEM
The Viper system is a CBIRS that is described in more
detail in [23, 24]. The system uses many techniques known
from TR applications and aims at incorporating them into
the domain of CBIR.

2.1 System Architecture
The main di�erence compared with other systems is the
presence of a very large number of more than 85000 pos-
sible features. Most images contain between 1000 and 2000
of theses features. The access method to the features is the
inverted �le, which is the most common access method used
in TR. Thus, Viper allows a fast and eÆcient access to the
large number of features [12].

The emphasis of the project is on user interaction. Hence,
it embeds several interaction strategies using several steps
of positive and negative feedback. Both online and o�ine
learning are employed in the system. Viper o�ers a good
exibility for learning as it has a very large number of fea-
tures for the creation of feature weights. Especially the ex-
tensive use of negative feedback has shown to be very e�ec-
tive [11] and is also very important for the long term learning
approach in this paper.

2.2 Viper Features
The system used for this study implements four di�erent
groups of image features:

� A global color histogram based on the HSV color space
which corresponds roughly to the human color vision
[22];

� local color blocks at di�erent scales for �xed regions
by using the mode color for each of the �xed blocks;
the image is successively partitioned into four equally
sized blocks and each block is partitioned again four
times;

� global texture characteristics are represented by the
histograms of the response to gabor �lters of di�erent
frequencies and directions; gabor �lters are known to
be a good model for the human perception of edges
[9];

� local Gabor �lters at di�erent scales and regions by us-
ing the same blocks as for the local color features and
applying Gabor �lters with di�erent directions and fre-
quencies to these blocks.

These features are only low level features, but because of
the high number, very complex queries can be constructed
with them. Higher level features like image regions may

provide better results, but we still su�er from the semantic
gap between the semantics the user is looking for and the
visual content the system can o�er.

2.3 Weighting schemes
We have implemented several weighting schemes known from
the TR literature [21]. They are all based on the collection
and document frequencies of the features. For the experi-
ments in this paper, we use the inverse document frequency
weighting, which weights the features in the following way:

relevancej :
1

N

NX
i=1

(tfij � Ri) � log
2

�
1

cfi

�
(1)

scorekq =
X
j

(tfkj � relevancej) ; (2)

where tf is the term frequency of a feature, cf the collection
frequency of a feature, j a feature number, q corresponds to
a query with i = 1::N input images, k is one result image
and Ri is the relevance of an input image i within the range
[�1; 1].

We can see in Equation 1 that the �nal result mainly de-
pends on the collection frequency of a feature. Rare features
are weighted high, whereas features very common in the col-
lection are weighted low because they contain less informa-
tion. The term frequency of a feature in the input images
has a has a minor inuence. We can see in Equation 2 that
besides the relevance factor for a feature, the term frequency
of the feature in the resulting image has a small inuence
on the �nal score.

3. LEARNING FEATURE WEIGHTS FROM
USER BEHAVIOR

Reference [26] points to the web demonstration of the CBIRS
Viper we used for this study. Every time a user accesses this
page and does an action, it is logged with a time stamp. Like
this, we can always see what the user did and which prob-
lems he might have encountered with the system. This also
o�ers the possibility to make an o�ine analysis of the data
to better suit the information needs of a user. The host
name of the user is also saved, but no other private data.

3.1 Analyzing the Log Files
This section gives a general overview of the data we logged
into a �le. Between September 1999 and January 2000, we
had 3500 accesses to the system. About half of the accessors
just looked at random or sorted image sets or watched the
parameters, but about 1700 accesses actually were queries.
This shows that many people visited the page, but a large
number of them just played around with the system. This
can be con�rmed with the fact that only 24 of the 201 hosts
which accessed the system had more than 20 actions with
the system. About 40 percent of the queries came from
di�erent hosts within the University of Geneva. Of the 1700
queries, 786 where multiple image queries. Only multiple
image queries contain enough information for the algorithm
we want to employ.

In the log �les, the query data from 10 di�erent databases



Table 1: The di�erent functions of the system and
their use in the web demonstration

Chose Database 668 times
Browse Image Names 251 times

Image Queries 1586 times
Random Images 586 times
Change Options 114 times
Clear Judgments 100 times

is regarded. It is hard to map the importance of features
from one database to another database although they use
the same set of features. The distribution of the features
actually present in the database is very di�erent for every
database. Only the histogram features for color and tex-
ture are present in a very large number of images in every
database.

From the log �les, we could also analyze the problems the
user had with our system. Several people did queries with-
out marking any image as relevant. As a result, we inserted
a comment telling the user that at least one image needs to
be marked. Another problem encountered while analyzing
the log �les was related to using too much negative feedback.
This can as well remove all the important features from the
query and lead to bad results. We therefore have imple-
mented a modi�ed version of Rocchio's formula [17] for sep-
arately weighting positive and negative relevance feedback
[11].

3.2 Learning from Log Files
The two rationales for our learning algorithm are:

� Features which occur often in two images marked to-
gether positively in the same query step should have a
higher weighting than others;

� features which occur often in images marked once pos-
itive and once negative in the same query step should
have a low weighting.

Based on these principles, we identi�ed all pairs of images
marked together. Queries with two input images just have
one pair, whereas queries with three images have three and
queries with four images have six. Thus, the number of
image pairs in a query with n images is:

number of image pairs =
n � (n� 1)

2
: (3)

The 786 multiple image queries lead to more than 31.000
image pairs marked together. If images are marked together,
both negatively, the image pair is discarded, as this does not
contain much information. Images can be marked together
negatively for di�erent reasons and may not have anything
negative in common.

We then analyzed which features the two images of a pair
have in common. Positive image pairs lead to a positive
mark for the features they have in common and negative

image pairs to a negative mark. Negative pairs have in
general a smaller number of features in common. On av-
erage the image pairs have slightly more than 300 features
in common. In total, the 31.000 image pairs lead to 10 mil-
lion feature marks (6.1 million positive and 3.9 million neg-
ative). We separately analyzed the image database of the
T�el�evision Suisse Romande (TSR) because our user exper-
iments are based on this database. For the TSR database,
we had 3.800 image pairs and 1.02 million feature pairs (0.47
million positive and 0.55 million negative), which represents
about 10% of all the accesses to the system.

Features with a very high collection frequency like the his-
togram features occur about the same time as positive and
negative pairs. Hence, their respective weight should stay
very similar as before.

The additional factor we want to calculate should be in the
range of [0; 2] to allow poor features to disappear completely
and good features to be weighted signi�cantly high. Features
which occur only negatively should have a value of zero and
features which occur only positively should have a value of 2.

This leads to the following simple formula for the additional
factor factorj :

factorj = 1 +
pi

pi + ni
�

ni

pi + ni
; (4)

where j is the feature number, pj then number of positive
marks for feature j and nj the number of negative marks.

The new weighting formula for a feature is basically the
same as it was before with only the additional factor from
Equation 4 being calculated and included into Equation 1
as can be seen in Equation 5.

relevancej = factorj �
1

N

NX
i=1

(tfij � Ri) log
2

�
1

cfi

�
: (5)

Because improvements were lower than expected for the
queries with relevance feedback (see Figure 2), we imple-
mented a second factor similar to the factor in Equation 4
for comparison. We think that a complete disappearance of
poor features might reduce the possibility to move in feature
space, an e�ect which is stronger visible in feedback queries.
Hence, we implemented a factor where the negative value
can only reach a minimum of 0:25, whereas the maximum
factor can be up to four, when only positive marks occur. If
positive and negative marks occur with the same frequency,
the factor stays at one. The resulting factor2j is obtained
by rescaling the positive and negative parts of factorj in a
di�erent way as can be seen in Equation 6.

factor2j =

8<
:

0:25 +
factorj
0:75

: factorj < 1
1 : factorj = 1

1 + (factorj � 1) � 3 : factorj > 1
(6)

For the calculation of the weight, factor2j is used in exactly
the same way as factorj in Equation 5.

The fact that there are slightly more pairs marked together
positively than there are negative pairs may lead to a dif-



ferent quantization of positive and negative parts, but does
not alter the quality of the results.

4. EXPERIMENTAL RESULTS
To analyze the success of this method, we use a user ex-
periment performed in [12]. This includes a very heteroge-
neous database of 2500 images from the T�el�evision Suisse
Romande (TSR). 14 queries were presented to 3 users for
relevance judgments. The users had to mark all the images
in the database they regard as being similar to each of the
14 query images. Interestingly, the result sets for each user
di�er strongly in size and also in the images being selected.
Similar e�ects were already reported in [25].

To evaluate the performance, we use precision/recall (PR)
graphs which are the standard evaluation method in TR
[19] and are more and more used in CBIR [24]. The results
shown below are the PR graphs averaged over the relevance
sets of all users and all queries from the user experiment. To
simulate relevance feedback based on the user judgments,
we used the algorithm explained in [11]. We feed back all
images the user regards as relevant and which are in the �rst
20 images the system returns for the initial query.

The training data is only taken from the usage of the web
demonstration system and does not have any connection
with the user experiment we performed.

We see in Figure 1 that the results of the system with the ad-
ditional factor are up to 10% better than the original graph
when all queries of the same database (TSR) are used to
calculate the weights. Using all queries of all the di�erent
databases still gives an improvement of 7% to 8%, but only
in the beginning of the graph. The overall improvement is
lower when using the data of all databases.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Version with factor=1
With learnt factor of TSR database
With learnt factor of all databases

Figure 1: PR-Graph for a system with and without
a learned factor (without feedback).

In Figure 2, we can see that the results of the �rst feedback
step are much better (up to 100% in the middle parts) than
the results before feedback (compare Figure 1). An improve-
ment in the beginning of the graphs is especially important
because this part represents the images the user actually
views. The results with the learned factor are signi�cantly
better than without the factor, even on this high level. This

shows that the gain with the additional factorj is not just
limited to one query step as it favors image pairs already
marked together.

When we use the factor learned from all the di�erent databases,
the results are about 3% to 5% better than without the
learned factor. We think that this improvement was only
small because the additional factor can become 0 for bad
features which limits the exibility to move in feature space.
As a consequence, we repeated the experiments with a sec-
ond factor explained in Equation 6.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Pr

ec
is

io
n

Recall

Version with factor=1
With learnt factor of TSR database
With learnt factor of all databases

Figure 2: PR-Graph for a system with and without
a learned factor (with feedback).

Figure 3 compares the results obtained using the two fac-
tors, respectively learned on the queries of the TSR database
and learned with all databases. We can see that the results
with the second factor are in both cases better for factor2j .
The beginning part of the graphs is almost identical, but in
the middle parts of the graph the results improve with the
second factor.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

With learnt factor 1 of TSR database
With learnt factor 2 of TSR database
With learnt factor 1 of all databases
With learnt factor 2 of all databases

Figure 3: Comparison of the two di�erent weighting
factors (without feedback).

Figure 4 shows a comparison of the results obtained using
the two factors for the queries with feedback. Here, we can
clearly see the improvements of factor2j compared to factorj



of up to 7%, especially in the middle parts of the graph.
This shows that it might be better to let the factor always
be above zero to not reduce the mobility in feature space.
The small drop o� in the beginning of the curve for factor2j
can be explained with one query with only very few features
and basically no textures, where the �rst returned image
was non-relevant.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

With learnt factor 1 of TSR database
With learnt factor 2 of TSR database
With learnt factor 1 of all databases
With learnt factor 2 of all databases

Figure 4: Comparison of the two di�erent weighting
factors (with feedback).

We also made some experiments where we tried to learn
factorj based on feedback queries performed on a com-
pletely di�erent database. The results were basically the
same as without learning. The results using all the feedback
from every database show clearly that not much feedback
of the same database is necessary to improve the results of
a query. Feedback from other databases does not change
the results much as the feature space is only very sparsely
populated and the databases populate di�erent areas of the
feature space.

We see that calculating weights from user log �les brings
strong improvements, especially, when the factor is learned
based on queries of the same database. Learned over all
queries and all databases, the improvement was not ex-
tremely strong, but clearly visible. De�ning a user pro�le
for learning could bring even stronger improvements, espe-
cially if the user is often performing similar search tasks.
Therefore, we propose to have a hierarchy of factors, cor-
responding to a user, a domain and a global factor to be
learned. To do this, a user identi�cation needs to be in-
serted into the log �le.

5. CONCLUSIONS AND FURTHER WORK
In this paper, an approach is presented on how to learn the
importance of features in CBIR from log �les containing user
behavior of a web demonstration system. The problems of
log �les on the web is of course that we do not know much
about the quality of the user data. Many people may come
to a web page to try out the system and to see how it reacts
and might even challenge the system with inconsistent data.
This means that we can not always learn much from this
kind of data. With the proposed approach, artifacts can be
minimized as combinations of image pairs with high feature
similarity have muchmore importance than image pairs with

low feature similarity. The experiments with the factors we
use show that, even with this kind of data, a signi�cant
improvement in retrieval quality can be reached. This is
mostly true when the feature importance is learned on the
same database. In this case, the results are very good.

Much better results will be possible once the data is obtained
from serious users and even better if the study is restricted
to a certain domain or a certain user. Like this speci�c
user pro�les or group pro�les can be learned. We propose
a hierarchy of learned feature weightings on a user, domain
and global level.

Besides the learning of a feature weight for future queries
we can evaluate the usefulness of features. This can also be
used for the creation of new features. New features can be
extracted for the old images and can directly be evaluated
by using this method with the old log �les.

More work needs to be done on �nding an optimal factor
to calculate a feature weight. We only proposed a very
simple factor without any optimization. Another promis-
ing approach is to not only analyze pairs of images marked
together, but directly evaluate multiple image queries by
looking at all the images marked in a query. Features con-
tained in n > 2 images marked together in the same query
step should for example get a much higher weighting than
features only contained in two images.

6. REFERENCES
[1] Active web museum.

http://abyss.eurecom.fr:1111/AWM/login.html,
2000.

[2] B. Berendt and M. Spiliopoulou. Analysis of
navigation behaviour in web sites integrating multiple
information systems. VLDB Journal: Special Issue on
Databases and the Web - to appear, 2000.

[3] IEEE Workshop on Content-based Access of Image
and Video Libraries (CBAIVL'99), Fort Collins,
Colorado, USA, June 22 1999.

[4] Compass web page. http://compass.itc.it, 2000.

[5] I. J. Cox, M. L. Miller, S. M. Omohundro, and P. N.
Yianilos. Target testing and the PicHunter Bayesian
multimedia retrieval system. In Advances in Digital
Libraries (ADL'96), pages 66{75, Library of Congress,
Washington, D. C., May 13{15 1996.

[6] Sur�mage webdemo. http://www-rocq.inria.fr/
cgi-bin/imedia/surfimage.cgi, 1999.

[7] A. Kohrs and B. Merialdo. Clustering for collaborative
�ltering applications. In Proceedings of the
International Conference on Computational
Intelligence for Modelling Control and Automation,
Vienna, Austria, February 1999. IOS Press.

[8] C. S. Lee, W.-Y. Ma, and H. Zhang. Information
Embedding Based on User's Relevance Feedback for
Image Retrieval. In Panchanathan et al. [14]. (SPIE
Symposium on Voice, Video and Data
Communications).



[9] W. Y. Ma, Y. Deng, and B. S. Manjunath. Tools for
texture- and color-based search of images. In B. E.
Rogowitz and T. N. Pappas, editors, Human Vision
and Electronic Imaging II, volume 3016 of SPIE
Proceedings, pages 496{507, San Jose, CA, February
1997.

[10] T. Minka. An image database browser that learns
from user interaction. Master's thesis, MIT Media
Laboratory, 20 Ames St., Cambridge, MA 02139, 1996.

[11] H. M�uller, W. M�uller, D. M. Squire,
S. Marchand-Maillet, and T. Pun. Strategies for
positive and negative relevance feedback in image
retrieval. In Proceedings of the 15th International
Conference on Pattern Recognition (ICPR 2000),
Barcelona, Spain, September 2000. IEEE.

[12] H. M�uller, D. M. Squire, W. M�uller, and T. Pun.
EÆcient access methods for content-based image
retrieval with inverted �les. In Panchanathan et al.
[14]. (SPIE Symposium on Voice, Video and Data
Communications).

[13] W. M�uller, D. M. Squire, H. M�uller, and T. Pun.
Hunting moving targets: an extension to Bayesian
methods in multimedia databases. In Panchanathan
et al. [14]. (SPIE Symposium on Voice, Video and
Data Communications).

[14] S. Panchanathan, S.-F. Chang, and C.-C. J. Kuo,
editors. Multimedia Storage and Archiving Systems IV
(VV02), volume 3846 of SPIE Proceedings, Boston,
Massachusetts, USA, September 20{22 1999. (SPIE
Symposium on Voice, Video and Data
Communications).

[15] M. Pazzani and D. Billsus. Learning and revising user
pro�les: The identi�cation of interesting web sites.
Journal on Machine Learning, 27:313{331, 1997.

[16] QBICTM { IBM's Query By Image Content.
http://wwwqbic.almaden.ibm.com/~qbic/, 1998.

[17] J. J. Rocchio. Relevance feedback in information
retrieval. In The SMART Retrieval System,
Experiments in Automatic Document Processing [20],
pages 313{323.

[18] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra.
Relevance feedback: A power tool in interactive
content-based image retrieval. IEEE Transactions on
Circuits and Systems for Video Technology,
8(5):644{655, September 1998. (Special Issue on
Segmentation, Description, and Retrieval of Video
Content).

[19] G. Salton. Evaluation parameters. In The SMART
Retrieval System, Experiments in Automatic
Document Processing [20], pages 55{112.

[20] G. Salton. The SMART Retrieval System, Experiments
in Automatic Document Processing. Prentice Hall,
Englewood Cli�s, New Jersey, USA, 1971.

[21] G. Salton and C. Buckley. Term weighting approaches
in automatic text retrieval. Information Processing
and Management, 24(5):513{523, 1988.

[22] J. R. Smith and S.-F. Chang. VisualSEEk: a fully
automated content-based image query system. In The
Fourth ACM International Multimedia Conference and
Exhibition, Boston, MA, USA, November 1996.

[23] D. M. Squire, H. M�uller, and W. M�uller. Improving
response time by search pruning in a content-based
image retrieval system, using inverted �le techniques.
In CBAIVL99 [3], pages 45{49.

[24] D. M. Squire, W. M�uller, H. M�uller, and J. Raki.
Content-based query of image databases, inspirations
from text retrieval: inverted �les, frequency-based
weights and relevance feedback. In The 11th
Scandinavian Conference on Image Analysis
(SCIA'99), pages 143{149, Kangerlussuaq, Greenland,
June 7{11 1999.

[25] D. M. Squire and T. Pun. Assessing agreement
between human and machine clusterings of image
databases. Pattern Recognition, 31(12):1905{1919,
1998.

[26] Viper webdemo. web page: http://viper.unige.ch/,
1999.

[27] A. Winter and C. Nastar. Di�erential feature
distribution maps for image segmentation and region
queries in image databases. In CBAIVL99 [3], pages
9{17.

[28] K.-L. Wu, P. S. Yu, and A. Ballman. Speedtracer: A
web usage mining and analysis tool. IBM Systems
Journal on Internet Computing, 37(1), 1998.


