

Why don’t we practice what we teach?

Engineering Software for Computer Science Research in Academia.

Andre Oboler, David McG. Squire and Kevin B. Korb

School of Computer Science and Software Engineering, Monash University, Australia
{andre, davids, korb}@csse.monash.edu.au

Abstract

The development process used by academic
researchers often seems unsystematic. A Software
Development Life Cycle (SDLC) is seldom considered,
commenting is scarce, and external documentation
consists of erasure marks left on whiteboards.
Configuration management is paid lip-service, but is not
standard practice. This paper examines reasons behind the
apparent large-scale non-adoption of software engineering
in academic research. The effects where it was adopted
are examined. Finally, we present an SDLC designed for
the academic research environment.

1. Introduction

Computer science research usually relies on custom
software. This software may implement new algorithms
or methods, or facilitate other research. The development
process of academic software is often extremely informal.
The inherently high-risk and evolving nature of research
renders the risk mitigation approaches of most SDLCs,
such as the Spiral, inappropriate. The resultant code is
often unusable by anyone but its authors, and, even then,
only while fresh in their minds. It is all too often throw-
away code, yet research is a continuum. There is a
dichotomy between the long-term aims of research and
the short-term aims of most research programmers.

Watts Humphrey [1] asked “Why don’t they [students]
practice what we [academic staff] preach?” In this paper,
we ask “why don’t we practice what we teach?” We
examine the aims of computer science research and its
practitioners. The potential benefits of software
engineering in the university setting are introduced, as
well as the prohibitive cost of applying it as in industry.
We look at current practice, its rationale and problems.
Although a perpetual issue in computer science
departments, many academics and research students
ignore software engineering and feel their work is too

small to need it. Past research has suggested improvement
in practices across the board, from industry to education
[1][2][3][4].

The academic research environment has its own goals,
needs, and problems. The current approach, and the
problems and impact of software engineering practices,
are examined using case studies, surveys and interviews.
Although others have recognised the problems of
applying industry-style software engineering to academic
research, we suggest that writing off software engineering
as “industry-only” is wrong, as is using it regardless. We
show that there are aspects that work for academic
researchers, and that academic research needs a minimum
overhead approach that addresses the needs of
researchers. We introduce RAISER/RESET, a SDLC that
addresses the deficiencies of current approaches when
applied in academic settings.

2. Software Engineering and Academia

In 1950 Turing [5] noted that for artificial intelligence
research to succeed, improvements in both programming
and engineering are needed. As the IT industry developed
the “software crisis” emerged. The first conference on
software engineering, prompted by this crisis, took place
in 1968 [6]. A follow-on conference focused on making
software development more “engineering-like” [7].

In 1970 Royce [8] introduced the first SDLC model,
the Waterfall. Royce tried to show the steps necessary to
bring large-scale software development to an operational
state. He first presented a two-step approach: “analysis”
leading into “coding”. Royce explained that for small
projects, in which the software will only be operated by
the developers, this is sufficient.

In 1988 Boehm [9] introduced the Spiral SDLC,
pointing out that existing models discouraged reuse. The
spiral model focuses on the evolving nature of software
through prototyping and repeated risk assessment phases.

mailto:korb}@csse.monash.edu.au

In 1989 the ACM education board endorsed a report
outlining a computer science curriculum including
“Software Methodology and Engineering”. This featured
modular design, abstraction and lifecycles. It aimed to
teach how software can be designed for understandability
and modifiability [10]. Reuse was not explicitly included.

In 1992 Krueger [11] noted that reuse had failed to
become standard practice in industry. In 1996 Devos and
Tilman [12] noted that straightforward OOA/OOD
focuses on reuse and evolutionary needs too late.

In 1998 Robillard and Robillard [3] compared student
development work with industry. They showed that
university work was dominated by the programming
phase. Humphrey [1] (1998) arrived at the same
conclusion, adding that undergraduate students failed to
use software engineering practices they had been taught
unless directed to do so. Students claimed that class
projects were too small. Humphrey described the common
student ethic as “ignoring planning, design and quality in
a mad rush to start coding”. Whether the research student
ethic is similar was not discussed.

In 2000 Cook, Ji and Harrison [4] suggested that
repeatability might be less relevant for longer term
process improvement in software engineering than in
other engineering fields. They suggested focusing on
design activities and the adaptability of the software
process. The evolvability of software is based on the code
quality, the evolution process, and the organisational
environment in which it takes place. Cook et al. [4]
recommended four steps to software evolvability: analyse
which parts of the system might need to change,
implement the change, restabilise the product (as changes
may causes other errors), and test the changed product.

3. A complete approach

We focus on the development of software for research
purposes as part of the overall computer science research
process in academia.

Our investigation began with two questions:
• Is there room for systematic improvement in the

approach computer science researchers take to
developing software as part of their research?

• Is there a way to draw on the body of knowledge
developed in software engineering and use this
as the basis for systematic improvement?

We also consider questions relating to current practice
by researchers, their level of knowledge and experiences.

4. Research Methods

We employed both quantitative and qualitative
methods, including case studies, surveys, interviews and
correspondence with researchers and software engineers.

The survey findings were compared to the experiences
of researchers. The case studies were compared to survey
trends, and to other projects’ experiences as discussed in
the interviews. The US survey led to alterations and
improvements before the Australian survey was released.
Full descriptions of these study components and detailed
results can be found in [13].

4.1 Survey

They survey was conducted online, and advertised via
e-mail to the heads of the computer science (or similar)
departments. From the 255 United States universities e-
mailed, 29 survey responses were collected from 17
universities. In Australia, from the 34 universities e-
mailed, 35 responses were collected from 13 universities.
15 of these were from Monash University.

Statistical analysis was carried out on the survey
results. The Spearman rank order correlation (for ranked
responses) and the Pearson product moment correlation
(for real values) were used. A t-test was used to calculate
the probability that there was no correlation.

4.2 Interviews

All interviews were tape-recorded. They were
conducted privately and took place over a one-week
period. There were 12 interviews in all, over 13 hours.

4.3 Case Studies

Each case study involved: interviews with developers
and users, observations from meetings and presentations,
reviews of internal documentation, published literature
and meeting minutes and field testing products. Brief
descriptions of the three projects studied are given below.

4.3.1 CaMML (Causal Discovery via MML)
CaMML was developed by Wallace and Korb [14]. There
have been four versions. Three were based on the original
code and developed without any form of software
engineering. Korb [15] felt it had suffered for this. The
latest implementation effort plans to address issues
including maintainability, readability and extensibility.

4.3.2 CDMS (Core Data Mining Software)
CDMS was inspired as "there was no common platform
for people to carry-out data mining …different programs
spat out different forms of data and no one knew how to
use any of the programs apart from the author" [16].
There is a plan to publicly release software and a manual.

4.3.3 The GIFT (GNU Image Finding Tool)
The GIFT [17] is a framework for content-based image

retrieval (CBIR) systems. A major goal was to produce a
modular, extensible framework of pluggable components,

so that research students could focus on the specific
aspect they were researching. For example, in one
semester a research student at Monash University
extended GIFT’s MRML (Multimedia Retrieval Markup
Language) to support query-by-region, a task not possible
had it been necessary to build an entire CBIR system.

5. Results

5.1 The nature of research and its needs

A clear and constant aim seldom exists in academic
software development [15][19]. Development is an
opportunistic process, not systematically planned [20],
and evolves as the researcher gains knowledge [15][19].
Most research ideas are discarded; it is the exception that
something works [15]. Figure 1. Software Development Life Cycles used in

development of academic research software Pressman [19] and Brooks [21] observed that the goals
and requirements of research software differ from
industry. Software engineering research has focused
mostly on industry. Wallace [13] observed that, in his 40
years experience, research practices had changed little.
Pressman [19] suggested that an approach for the research
community should be primarily “agile”. The aim of
research is to advance the state of knowledge. The aim of
researchers is often to publish: academics need to publish
articles to build their reputations; research students need
to complete their theses. Both groups aim to publish in
minimum time [15]. There is usually no incentive to
develop robust, extensible and flexible software [15].
Despite this, most would like to start from a well-
engineered foundation. We found that much time was lost
due to prior obscure coding and a lack of documentation.
High quality research work is often shelved once the
programmer leaves. The cost for a new person to take
over is often prohibitive, or the task nearly impossible.

CDMS revealed the difficulty of funding development
activity in Australia. When 90% complete and being used
as a platform by other projects, it was almost shelved.

Statistical analysis also highlighted a significant
correlation between the willingness to document a project
after the research was completed and a higher level of use
of certain software engineering practices. The desire to
use more software engineering earlier and the use of code
and technical reviews are also of interest.

The average number of papers produced by research
students was correlated with the number of spin-off
projects as well as a history of increased software
engineering, a desire to use more software engineering
earlier and greater use of code reviews.

Two dominant views appear regarding code reviews:
those who know about, but do not use them (11 people),
and those who sometimes use them (again 11 people).
One interviewee suggested that to review a postgraduate
student’s code closely might imply mistrust [15].

5.3 Current practice, benefits and costs
5.4 Documentation and Communication

Due to a skewed sample population in the US survey,
we will concentrate here on the Australian results. These
show that an unplanned and non-systematic approach to
development dominates (see Figure 1).

Interviews indicated design documents were useful
early, but became a burden later [15]. In CDMS, class
diagrams were initially useful, but became less so as code
familiarity increased and change became more rapid [15].
They were eventually abandoned.

Survey participants were asked how regularly they
used a variety of software engineering methods, and why.
The results indicated that many techniques are considered
inappropriate or too costly for research work.

CDMS was developed using a paired-programming
approach. “We very rarely sit down and start coding
without discussing the issues first… it’s interesting and
scary the impact that small little issues can have on the
system.” [16]. This sort of communication was found to
be much more effective than documentation [15].

In Australia, both funding and promotion are related to
publication rates. Interviews indicated that “the primary
aim [in research coding] is to get a flaky prototype
working sufficiently to get a few statistics out” [22], in
order to publish. The incentive is to “leave it in a half-
finished, barely usable, state and go and do something
else” [18]. While often beneficial to current researchers,
this approach is clearly detrimental to those of the future.

Regarding the CDMS user manual, “We're not sure
how this will happen. We were sort of hoping it would
happen by magic or be delivered by a stork” [22]. CDMS
has high publication potential, but is not yet stable enough

to write about. There are other more pressing things (like
PhD theses) requiring attention [15].

In the case of CaMML, completed design documents
were ignored. Research students, wanting to code
immediately, simplified the design, making it less general
and hence less extensible. A gap appeared between
documents and code: “We were being typical computer
scientists and coding without any specification” [23].

A GIFT user found that the MRML manual was
helpful. It was sometimes necessary, however, to consult
the authors (via e-mail), or their theses. The decision to
use GIFT was based on an expected time saving and its
platform-independence.

6. Discussion

An unplanned approach to developing research
software is widespread. There is little incentive to
continue development once a prototype exists and results
published. Many software engineering tools are rejected
as inappropriate, or of greater cost than benefit. It appears
that Royce’s [8] two-step approach (§2) is still prevalent.

Difficulties of distribution, hardware dependence and
cost once limited the reuse of research code. This is no
longer the case. Research coding for a single user and
purpose is now outdated.

While the Spiral model [9] works well for industry,
research often stops after prototyping. An evolutionary
approach is needed, but it must take a longer-term view.

Krueger’s observation [11] that reuse seldom occurs is
particularly true of academic development. Slight
adjustments to past work often require new researchers to
start from scratch. The desire for reuse was the inspiration
behind both the GIFT and CDMS. Devos and Tilman’s
observation [12], that reuse should be factored in earlier,
is supported by the success of the GIFT.

We found the development ethic of research students
to be much as Humphrey [1] found for undergraduates.
For an individual researcher, the view that the cost of
software engineering is greater than the benefit, may be
accurate. For future researchers, however, well-
engineered code and decent documentation can provide a
better introduction to the research and reduce the recoding
of existing work.

This research supports the suggestion that the
evolvability of software is based on code quality, the
evolution process and the organisational environment in
which it takes place [4]. Both technical and code reviews
were associated with larger numbers of spin-off projects,
i.e. more evolution. A willingness to document after the
project, i.e. to follow through with the third step towards
evolvability [4], “stabilising” the development, was
associated with a higher level of software engineering and
again, with the use of reviews.

7. Preliminary conclusion

The key conflict in computer science research is that
between the desire to complete research quickly and that
to extend and mature the field. One encourages a "quick
and dirty" approach, the other requires a significant
amount of planning, effort and engineering. In order to
assist, rather than hinder, the research effort, the bulk of
software engineering should take place after the research
is over. A department's interests are served by developing
and supporting high-quality, long-term projects. They
attract students, improve the department’s reputation and
speed future research by providing a stable framework.

8 A two part approach – Research and
Development

The 1993 EDRC workshop concluded that it was time
to “adopt a more comprehensive approach to software
development—even within a research setting—and for
establishing a better infrastructure for software design,
maintenance and reuse'' [2]. This is still this case.

Research must contain an element of `discovery’. The
ideas in the researcher’s mind are subject to constant
review and change. A development process for software
to aid research must likewise be able to change rapidly
[19]. The development process should aid the researcher.
The real value is the idea. The burden of implementation
must be minimized during the research phase.

Development is the maintenance phase of a research
project. New algorithms and functionality should not be
added during this time. The development cycle is a
restructuring and documenting phase. It aims to provide
strong cohesion, so few modules will need to be changed
later, and loose coupling allowing a higher degree of
reuse and evolvability. Development cleans up the code
and leaves it stable for the next team of researchers.
Development may also recreate the interface, add user
documentation and make the product more useable.

The RAISER/RESET approach (see Figure 3) divides
work into research and development cycles. The aim is to
ensure that the both tasks occur and support, rather than
hinder, each other. The SDLC requires change to the
research process, but has a low overhead for research
staff. A high overhead for development is required, but
such an overhead is currently being paid by research
students. The RAISER/RESET SDLC shifts the burden to
a more proficient, specialised unit.

8.1 The RAISER/RESET SDLC

In the RAISER/RESET SDLC, research takes place in
the top “RAISER” half, while development takes place in
the bottom “RESET” half. A distinction is made between
initial research and follow-on research. More than one

8.1.5 RAISER “initial research project” can go into a single development
phase. Likewise, a development phase that produces
stable software may spawn many new “follow-on
research” projects.

RAISER (Reactive Assisted Information Science
Enabled Research), aims to reduce the burden of software
engineering so that it does not interfere with research, yet
still raises the evolvability and readability of research
code. The four features of RAISER are described below.

Reactive: RAISER is reactive rather than proactive.
Changes to ideas will cause changes to code and/or
approach. As the project changes, so to may the software
engineering tools being used.

Assisted: The code and methodology are there to assist
the researcher, not burden them.

Information Science Enabled: This stresses the
theoretical research that is behind the software
development.

Research: The RAISER phase should only occur
while new research is being done. Once all or a
significant (publishable) part of the research is completed
the project should migrate to the RESET phase.

The software engineering tools used in RAISER
should include internal commenting, high-level design
documents, algorithms, configuration management, and
occasional code reviews at the developers’ instigation.
Other methods should be added as appropriate. Anything
not of benefit to the researchers should be avoided. Other
recommendations for RAISER development:

Figure 3. The RAISER/RESET SDLC.
8.1.1 Initial research
Research software begins with an idea. The idea is

coded, considered, tested, changed, recoded, etc. and
eventually publication occurs. At this point most projects
are only half-done. After the initial exploratory research,
development is needed to clean code and produce design
and user documentation. This “stabilisation” [4] not only
makes the work more usable and “evolvable”, but also
lowers the barrier for future researchers.

• Code should be written in a modular way
• Code should use header blocks
• Header blocks should additionally contain notes

relating to possible future work in that module
• Configuration Management should be used.
• High-level design such as a class diagram or higher-

level DFD should be used. While it is useful the
diagrams should be updated.

8.1.2 Stable Platform • At least two people should work on a project
checking each other’s code for readability and
requesting clarifying documentation as needed.

Once the research has come to an end, work may
continue in the development phase. Researchers may
advise during development, ensuring the scientific
integrity of the altered product, and clarifying their code.
The “resetting” of the code should involve formal
technical reviews. It aims to produce readable,
documented, modular and reusable code. Development
should take place between research projects and not add
an additional burden to the researchers.

• A work schedule taking account of papers to be
written should be created.

8.1.6 RESET
As software developed during the RESET phase is

based on research software, RESET will differ somewhat
from the usual development cycle. The key difference is
the existence of a “research prototype” and access to the
one or more of its developers. The features of RESET are: 8.1.3 Follow-on Research

Follow-on research extends or improves the existing
research, through the development of new algorithms or
the addition of complementary new functionality. The
researcher should work with a stable platform rather than
the initial research. Much time is wasted trying to
understand other researchers’ code. Well-structured,
readable code and documentation can greatly reduce this.

Research Enabled: Software based on a research
might not fit any common design patterns. Opportunity
may exist for software engineering research to abstract
new design patterns.

Software Engineering: The development task is
largely one of software engineering. Existing
functionality should not change. The prototype must be
cleaned up and remoulded, restructuring code for
interface and robustness improvements. The software may
also be more thoroughly tested and debugged. Finished

design documents may be produced for future developers,
both software engineers who will integrate new
components and computer scientists who will create them.
A user manual may also be produced.

Techniques: The RESET process must vary
depending on the level of software engineering employed
in the RAISER phase. Suggestions for RESET
development include:

• Design and code reviews should be conducted
(initially on the researcher’s work and later with
him/her as a reviewer)

• Existing code should be checked for modularity and
restructured as needed

• An interface should be reviewed or created. It will
then be documented.

• Design documents should be produced explaining
the module structure and responsibilities

• User documents will be produced
• A functional specification detailing current

functionality, as well as possible improvements,
should be produced.

9. Conclusion

In this paper we have investigated the nature of
software development for research in computer science.
We have examined the way software engineering is
currently employed (or often not employed). We suggest
that isolated development of research software useable
only by the programmer is no longer the best approach,
yet is often used. Finally we have presented a new SDLC
and approach to software development aimed specifically
at the research environment. To recap: research and
development should be distinguished. Research requires
development. Development requires research. The two
must take place in turn, in a regularly repeating cycle and
the successful university of the future will require both.

References

[1] Humphrey, W. S. (1998). “Why don’t they practice what we
preach?”, Annals of Software Engineering, 1(4): 201-222.
[2] Steier, D., Coyne, R. and Subrahmanian, E. (1993).
“Software doesn't transfer, people do—(and other observations
from an EDRC workshop on the role of software in
disseminating new engineering methods)”, Technical report,
Carnegie Mellon University.
[3] Robillard, P. N. and Robillard, M. P. (1998) “Improving
Academic Software Engineering Projects: A Comparative Study
of academic and Industry Projects”, Annals of Software
Engineering, 6:343-363.
[4] Cook, S., Ji, H., and Harrison R. (2000), “Software evolution
and software evolvability”, Working paper, University of
Reading, UK.
http://www.personal.rdg.ac.uk/~sis99scc/desel/desel_result.html

[5] Turing, A. (1950). “Computing machinery and intelligence”,
Mind LIX(236): 433-60.
[6] Naur, P. and Randell, B. (eds) (1969). “Software
Engineering: Report on a conference sponsored by the NATO
SCIENCE COMMITTEE”, Garmisch, Germany, 7th to 11th
October 1968, Scientific Affairs Division, NATO.
[7] Randell, B. and Buxton, J. (eds) (1970). “Software
Engineering Techniques: Report of a conference sponsored by
the NATO Science Committee”, Rome, Italy, 27-31 Oct. 1969,
scientific Affairs Division, NATO.
[8] Royce, W. W. (1970). « Managing the development of large
software systems: Concepts and techniques”, 1970 WESCON
Technical Papers, Vol. 14, Western electronic Show and
Convention, Los Angeles, pp. 1-9. Reprinted in Proceedings of
the Ninth International Conference on Software Engineering,
Pittsburgh, PA, USA, ACM Press, 1989, pp.328-338.
[9] Boehm, B. W. (1988). “A spiral model of software
development and enhancement”, IEEE Computer 21(5): 61-72.
[10]Denning, P., Comer, D., Gries, D., Mulder, M., Tucker, A.,
Turner A., and Young, P. (1989), “Computing as a Discipline”,
Communications of the ACM, 32(1)
[11] Krueger, C. W. (1992). “Software reuse”, ACM Computing
Surveys (CSUR) 24(2): 131-183.
[12] Devos, M. and Tilman, M. (1996), “Object Oriented and
evolutionary Software Engineering”, WS18 workshop, OOPSLA
Conference, San Jose 1996
[13] Oboler, A (2002), “Investigating the use of Software
Engineering in Computer Science Research”, Honours Thesis,
School of Computer Science and Software Engineering, Monash
University, Australia. http://www.csse.monash.edu.au/hons/
projects/2002/Andre.Oboler/
[14] Wallace, C. S. and Korb, K. B. (1999). “Learning linear
causal models by MML sampling”, in A. Gammerman (ed.),
Causal Models and Intelligent Data Management, Springer-
Verlag.
[15] Oboler, A., Squire, D. and Korb, K. “Why don't we practice
what we teach? Engineering Software for Computer Science
Research in Academia”, Tech. Report 2003/139, School of
Computer Science and Software Engineering, Monash
University, Australia, 2003.
[16] Comley, Josh (2002). Interview with Josh Comley,
conducted for the USE CSR project.
[17] Squire, David McG., Müller, Henning, Müller, Wolfgang,
Marchand-Maillet, Stéphane, and Pun, Thierry, “Design and
Evaluation of a Content-based Image Retrieval System”, In
Design and Management of Multimedia Information Systems:
Opportunities and Challenges, 7, pp. 125-151, Idea Group
Publishing, 2001. http://www.gnu.org/software/gift/gift.html
[18] Wallace, Chris. (2002). Interview with Prof Chris Wallace,
conducted for the USE CSR project.
[19] Pressman, R. (2002). Re: SE practise in Comp. Sci.
Research, personal communication.
[20] Waite, W. (2002). Re: Use of software engineering in
computer science research, personal communication.
[21] Brooks, Jr, F. P. (2002). Re: Use of software engineering in
computer science research, personal communication.
[22] Allison, Lloyd (2002). Interview with Dr Lloyd Allison,
conducted for the USE CSR project.
 [23] Hope, Luke. (2002). Interview with Lucas Hope,
conducted for the USE CSR project.

http://www.personal.rdg.ac.uk/~sis99scc/desel/desel_result.html
http://www.idea-group.com/books/details.asp?id=7
http://www.idea-group.com/books/details.asp?id=7
http://www.gnu.org/software/gift/gift.html

	Why don’t we practice what we teach?
	Engineering Software for Computer Science Research in Academia.
	Abstract
	1. Introduction
	2. Software Engineering and Academia
	3. A complete approach
	4. Research Methods
	4.1 Survey
	4.2 Interviews
	4.3 Case Studies
	4.3.1 CaMML (Causal Discovery via MML)
	4.3.2 CDMS (Core Data Mining Software)
	4.3.3 The GIFT (GNU Image Finding Tool)

	5. Results
	5.1 The nature of research and its needs
	5.3 Current practice, benefits and costs
	5.4 Documentation and Communication

	6. Discussion
	7. Preliminary conclusion
	8 A two part approach – Research and Development
	8.1 The RAISER/RESET SDLC
	8.1.1 Initial research
	8.1.2 Stable Platform
	8.1.3 Follow-on Research
	8.1.5 RAISER
	8.1.6 RESET

	9. Conclusion
	References

