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Abstract

The Nearest Neighbor (NN) classification/regression techniques, besides their sim-
plicity, is one of the most widely applied and well studied techniques for pattern
recognition in machine learning. Their only drawback is the assumption of the avail-
ability of a proper metric used to measure distances to k nearest neighbors. It has
been shown that K-NN classifier’s with a right distance metric can perform better than
other sophisticated alternatives like Support Vector Machines (SVM) and Gaussian
Processes (GP) classifiers. That’s why recent research in k-NN methods has focused
on metric learning i.e., finding an optimized metric. In this paper we have proposed a
simple gradient based algorithm for metric learning. We discuss in detail the motiva-
tions behind metric learning, i.e., error minimization and margin maximization. Our
formulation is different from the prevalent techniques in metric learning where goal is
to maximize the classifier’s margin. Instead our proposed technique (MEGM) finds
an optimal metric by directly minimizing the mean square error. Our technique not
only resulted in greatly improving k-NN performance but also performed better than
competing metric learning techniques. We also compared our algorithm’s performance
with that of SVM. Promising results are reported on major faces, digits, object and
UCIML databases.

1 Introduction

Nearest neighbor methods for pattern recognition have been proven to be very useful
in machine learning. Despite the simplicity, their performance is comparable to other
sophisticated classification and regression techniques like Support Vector Machines (SVM)
and Guassian Process (GP) and they have been widely applied for a huge variety of
problems. Computer vision research has benefited greatly from advancements in nearest
neighbor methods, for example some state-of-the-art techniques for object recognition are
based on nearest neighbor analysis (1),(2). For a given query point, a nearest neighbor
classifier works by assigning it the label of the majority class in its neighborhood.

It is self evident that k-NN classifier’s simplicity leads to one of its major pros. A k-
NN classifier deals with multi-class classification scenario effortlessly. On the other hand
we need one-versus-one and one-versus-all techniques to deal with multi-class scenario
in case of binary classifiers like SVM. This makes them computationally expensive. As
k-NN classification involves no training they are computational efficient. But still the
effectiveness of k-NN methods stems from their asymptotic properties. The asymptotic
results in (3), (4), (5) suggests that a 1-NN method based on a simple Euclidean distance
will perform well provided the number of training samples is not too small. And 1-NN
will achieve the performance of a Bayes Optimal classifier as the number of training data
becomes very large. These asymptotic results are based on the fact that bias in the
prediction of function f(x) becomes vanishingly small if the number of training data N
is large with few features p i.e., N >>> p. But typical machine learning data has large
number of features and data required to validate these asymptotic results is humongous
which is not feasible. This is also known as Curse-of-Dimensionality (COD). Also due to
COD most of the data points are very far apart and k-NN neighborhoods are no longer
‘local’, refer to section 2.5 in (6). Therefore we need to modify distances in high dimensions
to alleviate the COD, reduce bias and make neighborhood local. This calls for tuning a
metric and hence metric learning.

As discussed, the performance of a nearest neighbor classifier depends critically on two
major factors: (a) the distance metric used and (b) size of the neighborhood (specified by
K which denotes the number of nearest neighbors). The value of K controls the Mean
Square Error (MSE) which is defined as MSE = bias2 + var. Small K implies small bias
but high variance and vice-versa. Since K is specified in terms of the number of nearest
neighbors of a query point x which implicitly depends on a distance measure, MSE can
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Figure 1: Contrived example demonstrating the impact of metric on margin

be controlled by estimating a distance metric (a metric is generally specified through a
norm and a positive semi-definite matrix). Typically we estimate the inverse square roots
of metric. That is we learn a matrix parameterizing the linear transformation of the
input space such that in the transformed space k-NN performs well. If we denote such
transformation by a matrix A, we are effectively learning a metric defined by ATA such
that d(x, y) = (x− y)ATA(x− y) = (Ax−Ay)T (Ax−Ay).

In the current research on nearest neighbor methods, a dichotomy exists for metric
learning methods in terms of their goals. Most ‘Metric Learning’ algorithms aim at finding
a metric that results in small intra-class and large inter-class distances (7), (8), (9), (10),
(11), (12). This results in maximizing the margin 1. Figure 1 depicts a simple contrived
example of data belonging to two classes represented by red and blue dots. As can be
seen that the classes are linearly separable and a hyper-plane is represented by a dark
black line. In this scenario, margin can be maximized in two ways, either we modify the
hyper-plane to better fit the training data or we transform the training data to maximize
margin with respect to a certain hyper-plane. The later has been the goal of most metric
learning algorithms. SVMs on the other hand optimizes margin by finding an optimal
hyper-plane. They are designed to minimize empirical risk with a bound on generalization
error. Metric learning can also be used to minimize empirical risk i.e., maximizing the
margin by modifying hyper-plane. Such a kind of strategy has been introduced in (13)
where metric learning has been employed as bias reduction strategy and reducing MSE to
better fit training data.

In this paper we have presented a novel metric learning algorithm with the goals of
maximizing the margin by reducing MSE directly. We propose a simple MSE gradient min-
imization (MEGM - Mean square Error’s Gradient Minimization) approach for improving
the performance of k-NN neighbor classifier. Our method is based on gradient descent
of MSE objective function. We compared MEGM’s performance with other metric learn-
ing approaches for margin maximization for example neighborhood component analysis
(NCA). As will be shown in section 4 our method not only results in significant improve-
ment in the performance of k-NN classifier but also outperforms other metric learning
algorithm on most data-sets. As we will discuss in section 5, unlike SVM we minimize the
empirical risk only. We have not catered for generalization in our algorithm. But in our
experiments we did not experience any over-fitting. The inclusion of generalization term
can be introduced in our framework and has been left as a future work.

Rest of the paper is organized as follows: we will discuss related work in section 2. Our
proposed MEGM algorithm is described in detail in section 3. Detail description about
experimental setup and comparison results on UCIML, face, object and digits data-sets

1The margin of a point is defined as the distance between the point and the closest point on the
classification boundary
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are given in section 4. We conclude in section 5 with pointers on future work.

2 Related Work

Our proposed algorithm MEGM is very close in nature to (14) where a gradient based
technique is used for selecting relevant features. That is, only diagonal terms of the
covariance matrix are estimated. In our method we learn a full covariance matrix rather
than estimating only diagonal terms. Thats why MEGM is superior to technique proposed
in (14).

The other notable techniques for metric learning are LMNN (15), RCA (16) and NCA
(7). Relevant Component Analysis (RCA) (16) constructs a Mahalanobis distance metric
from a weighted sum of in-class covariance matrices. It is similar to Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) in its reliance on second order
statistics. Large Margin Nearest Neighbor (LMNN) algorithm in (15) is posed as a convex
problem, and thus the reach of the global solution is guaranteed. However, a special
optimization solver is needed for efficient implementation.

Neighborhood Component Analysis (NCA) (7) maximizes margin by minimizing the
probability of error under stochastic neighborhood assignment. In particular each point
i selects another point j as its neighbor with some probability pij , and inherits its class
labels from the point it selects. pij is defined as a softmax over Euclidean distances in the
transformed space, parameterized by A:

pij =
− exp(‖Axi −Axj‖2)∑
k 6=i exp(−‖Axi −Axk‖2)

(1)

NCA maximizes the pij in above equation by finding an optimal A matrix. That is
the probability of the number of points correctly classified is maximized.

The comparison of our proposed algorithm (MEGM) with NCA has been a major
motivation of this work. Though NCA is sound in theory, our empirical results in section 4
suggests that MEGM performs better than NCA on most data-sets. We will mention in
section 5 about an approach to combine both MEGM and NCA to improve MEGM’s
generalization capacity.

3 Approach

In a typical regression setting, an unknown function f : RD → R is predicted from the
training data {(~x1, y1), (~x2, y2), ...(~xN , yN )}, where ~xi is a data point and y is the corre-
sponding target value. The predicted function f̂ is chosen to be the one that minimizes
some loss function such as ‘mean squared error’ (MSE) etc. The MSE for a data set
containing N of points is given in the following equation:

MSE(f̂) =
N∑

i=1

(f(~xi)− f̂(~xi))2 (2)

For classification task having T classes we can replace above error function as:

MSE(ŷ) =
T∑

t=1

N∑
i=1

(yti − ŷti) (3)

where ŷi denotes the predicted probability of point ~xi and yi denotes the true label (either
0 or 1) of point ~xi. For brevity we have denoted ŷ( ~xti) with ŷti and y( ~xti) with yti. In the
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following discussion we will assume that there are only two classes to make our derivations
simple. For any query point ~xi, nearest neighbor methods work by predicting the value ŷi

by considering the labels of its k nearest neighbors. In order to have a smooth boundary,
each neighbor votes for the query label based on its distance from the query point (refer
to (6) for details). Equation 4 shows the Nadaraya-Watson kernel for regression:

ŷ(~x) =
∑

j yjVj∑
j Vj

(4)

The vote Vj casted by each label around the query point ~x is usually chosen to be a function
that decays exponentially as the distance from the query point increases, for example a
Gaussian kernel:

Vj = exp
(−d(~x, ~xj)

2σ2

)
(5)

Determining votes using equation 5 assumes a well defined distance measure. This assump-
tion, as discussed in the previous section, is not always true, due to the COD and irrelevant
features, and can lead to bad results. d(~x, ~xj) in equation 5 can be replaced by a more
general metric: that is dL(~x, ~xj). If L = ATA, then dL(~x, ~xj) = (A~x−A~xj)T (A~x−A~xj).
Since MSE is a function of ŷ and ŷ depends on ||~x − ~xj ||2L, MSE can be minimized by
selecting an optimal value of L. In other words, a change in the L induces a change in the
distance, which can alter the votes. This alteration in the votes Vj triggers a change in ŷ
affecting the MSE. It is more helpful to optimize A rather than L, because optimization
for L requires to fulfill semi-positive constraint which is expensive to maintain. Obviously
trying all possible values of A is not feasible. Some sort of search mechanism is required
to find an optimal value of A. Votes Vj in equation 5 can be replaced by Wj as:

Wj = exp

(
−‖A~x−A~xj‖22

2σ2

)
(6)

The proposed gradient based technique (MEGM) is based on a gradient descent al-
gorithm to minimize MSE (lets denote by EA). The gradient EA is evaluated to find an
optimal A matrix. Convergence to the global minimum is not guaranteed. The risk of
local minima can be reduced by running the algorithm several times and choosing the
output with minimum error EA. The gradient of EA with respect to matrix A is:

∂E

∂A
= (yi − ŷi)

1∑
j Wj

∑
j

(yj − ŷj))
∂Wj

∂A
(7)

The size of the gaussian kernel centered at the query point (σ in equation 6) is set propor-
tional to the distance of the k nearest neighbors. Generally the average distance of half
of the nearest neighbors is used, as this measure is more stable under a varying distance
metric:

σ2 =
1
2

1
P

P∑
p=1

‖~x− ~xp‖2 where P = k/2 (8)

∂Wj

∂A in equation 7 can be derived as:

∂Wj

∂A
= 2WjA(~x− ~xj)(~x− ~xj)T (9)

Combining equations 7 and 9 we can write the gradient of EA with respect to matrix A
as:

∂E

∂A
= 2A(yi − ŷi)

1∑
j Wj

∑
j

(yj − ŷj)Wj(~x− ~xj)(~x− ~xj)T (10)
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Equation 10 represents the gradient of the error function with respect to matrix A which
is minimized to get an optimal A. The Polack-Ribiere flavour of conjugate gradients is
used to compute search directions, and a line search using quadratic and cubic polynomial
approximations and the Wolfe-Powell stopping criteria is used together with the slope
ratio method for guessing initial step sizes.

4 Experimental Results

In this section we present results on various machine learning databases from UCIML
repository (17), face, object and digit databases. Database details such as number of
data, features and classes as well as experimental setup details such as number of data per
category used for training and testing and the number of eigen vectors used are given in
table 1. For faces (yalefacs, yalefaceB, AT&T, caltechfaces, caltechfacesB), digit (USPS),
Object (Coil100) and Isolet data-set, not only we have compared MEGM’s performance
with standard k-NN classifier but also with SVM. MEGM’s results are also compared with
other metric learning approaches like NCA, RCA and LMNN.

To obtain SVM results, multi-class SVM with gaussian kernel is used. C parameter
for SVM are tuned through cross-validataion. σ parameter is set to the average distance
of k nearest neighbor as this approach has been shown to be more efficient for object
databases as shown in (18). For obtaining multi-class SVM results, one-versus-all strategy
is employed. Each experiment (except for UCIML databases) is repeated 10 times and
mean results and standard deviations are presented.

Faces, USPS, Coil100 and Isolet data-sets are also pre-processed for efficiency. Pre-
processing images using PCA is a common approach in object recognition research to
reduce dimensionality. This results in vastly reduced computational cost. In our experi-
ments, the results are obtained by reducing the dimensionality of data set by projecting
data on first few eigenfaces. Number of eigenfaces used for each database is given in
table 1. We have not investigated results without pre-processing images, that is using
gray-scale values as features due to computational cost. No pre-processing is done for
UCIML databases. The size of neighborhood (k) as discussed in section 3 is consistently
set equal to the log2(cardinality of data set) for all databases.

Database #Data #Features #Classes PCA #Train/Class #Test/Class
yalefaces 165 77760 15 50 4 7

yalefacesB 5850 307200 10 20 10 20
caltechfaces 435 47500 29 30 5 10

caltechfacesB 435 47500 2 30 50 100
AT&Tfaces 400 10304 40 50 5 5

Coil100 7200 16384 100 50 10 10
USPS 9298 256 10 50 20 10
Isolet 6238 617 26 30 20 10

Table 1: Details of Face, Object and Digit Databases used for classification

To obtain the final classification results, one nearest neighbor (1-NN) classification is
used. As mentioned in section 3, since both NCA and MEGM suffers from local minima
problems, some care has to be taken to make sure that it does not effect results. For
UCIML and other databases, we run MEGM and NCA thrice with different training data
samples and selected the best results. In order to make sure that our results are not biased
to NCA and MEGM due to this procedure, reported results for all other techniques for
example k-NN, SVM, LMNN and RCA are computed this way. That is each method is run
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thrice using different training samples and best results are selected in each run. Percentage
correctness rate is reported in case of faces, USPS, Isolet and Coil100 database, whereas
error rates are reported for UCIML data-sets. The bar graphs are displayed with matlab
‘hot’ colormap.

4.1 UCIML Repository Databases

To test the performance of MEGM with other metric learning methods, we selected major
UCIML databases. The error rate of each method for different databases is shown in
figure 2. The number of data, features and classes for each database is reported in the
title. Error rate of each method is obtained using 40 rounds of 2 fold cross-validation.
Prior to training all features were normalized to have zero mean and a unit variance.

As can be seen MEGM not only improved k-NN classification performance but in most
cases resulted in better performance than other metric learning techniques like NCA, RCA
and LMNN. MEGM outperforms other methods on Balance and Hayesroth databases.
Also it performed marginally better than other techniques on Credit-screeing, Dermatol-
ogy, Sonar, Statlog-heart, vowel and Monks2. On Monks1 and Monks3 both MEGM and
NCA performs equally well and error rate is close to zero for both these methods.
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Figure 2: Error rate comparison of various techniques on UCIML databases

Though MEGM performed better than other approaches on most databases as shown
in figure 2, NCA performance is also noteworthy especially on balance, monks1 and statlog-
heart. It performed marginally better than other techniques on Ionosphere, Housevote and
Hepatitis as shown in figure 3.
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Figure 3: Error rate comparison of various techniques on UCIML databases, NCA performs
best on these data-sets

4.2 Face Databases

We have experimented with 5 face databases. Yalefaces, YalefacesB, AT&T and cal-
techfaces were used to compare the performance of MEGM with margin based metric
learning algorithm (NCA) and other classification techniques like k-NN and SVM. Details
of these databases are given in table 1. Yalefaces, YalefacesB, AT&T are well-known in
face recognition research. The Yalefaces database (19) contains 165 grayscale images of
15 individuals. There are 11 images per subject, one per different facial expression or
configuration: center-light, with glasses, happy, left-light, with no glasses, normal, right-
light, sad, sleepy, surprised, and wink. The YalefacesB database (20) contains 5760 single
light source images of 10 subjects each seen under 576 viewing conditions (9 poses x 64
illumination conditions). For every subject in a particular pose, an image with ambient
(background) illumination was also captured. AT&T database (21) has ten different im-
ages of each of 40 distinct subjects. For some subjects, the images were taken at different
times, varying the lighting, facial expressions (open, closed eyes, smiling, not smiling) and
facial details (glasses, no glasses). All the images were taken against a dark homogeneous
background with the subjects in an upright, frontal position (with tolerance for some side
movement)

Caltechfaces and CaltechfacesB constitutes images from face category in Caltech-101
object database (22). Caltech-101 face category has 435 images of around 20 people.
Some example images are shown in figure 4. Caltechfaces database in table 1 is based on
splitting Caltech-101 face category in 20 categories, each belonging to different person. On
the other hand, CaltechfacesB in table 1 is based on splitting Caltech-101 face category
in two classes only, male and female.

Figure 4: Example images from caltechfaces and caltechfacesB

The SVM results are obtained by optimizing over C parameter. C is searched from the
values: 1, 10, 100, 1000. The comparative results on face databases are shown in figure 5
where percentage performance is reported. As can be seen that MEGM results in signifi-
cant improvements in k-NN classification and outperforms NCA on all databases. Though
performance gain of MEGM over SVM is not substantial, given that SVM is trained with
C parameter optimized through cross-validation, our results are encouraging.
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Figure 5: Percentage performance of different techniques on different face databases

4.3 USPS Database

The USPS digits data was gathered at the Center of Excellence in Document Analysis and
Recognition (CEDAR) at SUNY Buffalo, as part of a project sponsored by the US Postal
Service (23). Sample images from USPS digit data-set is shown in figure 6. Results on
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Figure 6: Example images from USPS database

USPS dataset are shown in figure 7(a). We did not find any noticeable increase in k-NN
performance on USPS database. Though MEGM marginally improves k-NN performance,
SVM performs the best. NCA on the hand did not result in any performance gain. SVM
results are optimized over C values of {1, 10, 100, 1000}.

4.4 Isolet Database

Isolet (Isolated Letter Speech Recognition) (17) consists of 26 categories. 120 subjects
spoke the name of each letter of the alphabet twice. Hence, we have 52 training examples
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Figure 7: Percentage performance of different techniques on USPS and Isolet databases

Figure 8: Sample images from Coil Object database.

from each speaker. Results on Isolet database is shown in figure 7(b). MEGM, SVM and
NCA resulted in k-NN performance on Isolet database. Like USPS, SVM outperforms our
method on this database. MEGM performs better than NCA. Similar to faces and USPS
datasets, SVM results are optimized over C values of {1, 10, 100, 1000}.

4.5 Coil100 Database

Coil100 object database consists of 100 object categories (24). Each category has 72
images taken at different angle of the object. Figure 7 shows results on Coil100 database.
Using MEGM and NCA we got some improvement over k-NN performance. SVM did not
perform well on this database with only 81% success rate as compared to k-NN method of
86% success rate. NCA also deteriorated k-NN results. The SVM results were obtained
by searching for C value from {1, 10, 100, 1000}.
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Figure 9: Percentage performance of different techniques on Coil100 object databases
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5 Conclusion

The main pro of our proposed MEGM algorithm is its simplicity. As discussed, MEGM
minimizes MSE gradient using a simple gradient descent algorithm. MEGM improves
k-NN classification by learning a data dependent distance metric and performs as well as
SVM on most if not all databases. Also It deals with multi-class problems effortlessly as
opposed to binary classifiers like SVM where a one-versus-one and one-versus-all strategy
is used. As discussed, SVM’s training and testing is computationally expensive, for ex-
ample it takes very long time to train and test an SVM classifier on Coil100 database. As
training involves training 100 classifiers and for classifying an image, all classifiers vote
for prediction. On the other hand, once a metric is learnt using MEGM, a simple nearest
neighbor classification is required. In typical object recognition tasks where number of
classes are very large, nearest neighbor methods should be preferable for their computa-
tional efficiency. Therefore k-NN methods equipped with a proper distance metric (for
example, one trained with MEGM) can be extremely useful.

A drawback of MEGM includes local minima problem. Standard approaches to avoid
local minima are to be used. Also one is tempted to think of over-fitting if the objective
function is only MSE. In this work we did not encounter any over-fitting. As a future
work we are investigating to modify our objective function to include a generalization
term, that is penalize large changes in A matrix to avoid over-fitting. We are currently
investigating to combine MEGM’s and NCA’s objective function to improve our results.
As in this study, MEGM which is based on the minimization of MSE resulted in better
performance than NCA and other metric learning algorithms which maximizes margin
explicitly, a natural extension to the proposed method is to combine the two approaches.
That is learn a metric by simultaneously maximizing the margin and minimizing the MSE.
The objective functions of MEGM and NCA is combined in the following equation:

EA =
N∑

i=1

(
yi − exp

(
−‖A~x−A~xj‖22

2σ2

))
+

(
exp(‖Axi −Axj‖2)∑

k 6=i exp(−‖Axi −Axk‖2)

)
(11)

We are investigating gradient based methods to optimize for A in equation 11. A
simple gradient based strategy as employed in MEGM can be used. Considering the
MEGM results, the combination with NCA can lead to good results.

There has been a lot of work done in adaptive distance metric (25), (26), (27). In
adaptive metric learning a separate metric is learnt for each query point. We are currently
modifying MEGM to work in such local settings. Training a separate metric for each query
point can become computationally expensive. We are investigating clustering techniques
to cluster data first and than train a separate metric for each cluster.

In summary, we proposed a simple mean square error’s gradient based metric learning
algorithm (MEGM) in this paper and showed that MEGM not only results in classification
improvement of k-NN classifier but also perform better than other metric learning algo-
rithms. The results are also compared with state-of-the-art classifier, SVM. Results are
shown on major UCIML, face, digits and object databases. Our results are encouraging
and requires additional investigation to further improve MEGM performance as described
above.
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